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1 Proof of Theorem 3.2

We derive a convex upperbound on log-partition A(θ). By the
convexity,

A(θ) = sup
µ∈Y
〈µ,θ〉 −A∗(µ) (1)

where A∗(µ) is the conjugate function A∗(µ) =
supθ∈Y〈µ,θ〉 − A(θ). One key fact is that A∗(µ) can be
expressed as the Shannon entropy as follows [3]:

A∗(µ) =


−H(p(x;θ(µ))) µ ∈Mo(B)

− lim{µs}→µH(p(x;θ(µs))) µ ∈ bd(M(B))

+∞ otherwise
.

Here M(B), Mo, and bd(M) is the mean parameter (the set
of realizable expected sufficient statistic), its interior, is its bound-
ary ofM respectively. And θ(µ) is the unique natural parame-
ter satisfying µ =

∑
x∈X p(x;θ)B(x) for µ ∈ Mo(B), and

{µs} ∈ Mo(B) is a sequence converging to µ ∈ bd(M(B)).

Recall that we denote d =
∑p
r=1 mr and bnode(x) =

vec[B1(X1), . . . , Bp(Xp)] ∈ Rd.

Express H(X) as H(bnode(X)). First, we will derive an upper-
bound of H(p(x; θ)) ≡ H(X) in terms of H(bnode(X)). By the
chain rule for entropy [2]

H(X, bnode(X)) = H(X) +H(bnode(X) | X)

(a)
= H(X)

where (a) holds because the entropy is zero when the variable is
deterministic on the condition, i.e., the function of the condition
[2]. From the other direction of chain rule,

H(X, bnode(X)) = H(bnode(X)) +H(bnode(X) | X)

(b)
= H(bnode(X)) +

p∑
r=1

H(Xr | bnode(X), X1, . . . , Xr−1)

(c)

≤ H(bnode(X)) +

p∑
r=1

H(Xr | Br(X))

where (b) holds by applying chain rule successively, and (c) holds
because conditioning reduces entropy. Note that, for a known
exponential family distribution, H(Xr | Br(X)) is constant. For
examples in a Gaussian, Dirichlet, Gamma, Wishart, Xr is also
a function of Br(Xr), meaning H(Xr | Br(X)) = 0. For a

Laplacian distribution, H(Xr | Br(X)) = H(Sign(Xr)) = 1.
Therefore, we can conclude that H(X) = H(bnode(X)) + C0

where C0 =
∑p
r=1 H(Xr | Br(X)) is the constant determined

by the types of nodes.

Now we derive an upper bound on entropy H(bnode(X)). We
will utilize the fact that, among any continuous random vectors
with the same covariance matrix, Gaussian random vector maxi-
mized the entropy. To do so, we need to construct an additive and
independent random vector U ∈ Rd so that bnode(X) + U be-
comes a continuous random vector and its entropyH(bnode(X)+
U) is closely related to H(bnode(X)).

Construct U . For each discrete node r ∈ ID ⊆ {1, . . . , p}, de-
fine the distance cr = inf

a6=b∈Xr

‖Br(a)−Br(b)‖∞ > 0 in the

domain of its sufficient statistic Br(Xr). we define cr = 0 other-
wise.

Now, we construct a d-dimensional random vec-
tor U = vec[U1, . . . , Up] where each element of
Ur = [Ur1, . . . , Urmr ]T ∈ Rmr is independently distributed as

Urir ∼

{
unif[−cr/2, cr/2] r ∈ ID and ir ∈ {1, . . . ,mr}
0 otherwise

,

and is independent to bnode(X). Since U has a sufficiently nar-
row range and is independent on bnode(X), bnode(X) is uniquely
determined by the (continuous) random vector bnode(X) + U .

Express H(bnode(X)) as H(bnode(X) + U). By the chain rule,

H(bnode(X) + U, bnode(X))
(d)
= H(bnode(X) + U),

where (d) holds because bnode(X) is deterministic under
bnode(X) + U . On the other hand,

H(bnode(X) + U, bnode(X))

= H(bnode(X)) +H(bnode(X) + U | bnode(X))

(e)
= H(bnode(X)) +H(U)

= H(bnode(X)) +
∑
r∈ID

(
mr log cr

)
,

where (e) holds because Shannon Entropy is invariant under a
transition and under a condition on independent random vectors.

Therefore we conclude H(bnode(X)) = H(bnode(X) + U) −∑
r∈ID

mr log c.
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Entropy Bound onH(bnode(X)+U). Since (differential) Shan-
non entropy of any continuous random vector is upper bounded by
that of a Gaussian random vector with the same covariance ma-
trix,

H(bnode(X) + U) ≤ d

2
log(2πe) +

1

2
log det Cov[bnode(X) + U ]

(f)
=

d

2
log(2πe) +

1

2
log det

(
[

1 E[bnode(X) + U ]
E[bnode(X) + U ]T E[(bnode(X) + U)(bnode(X) + U)T ]

])
(g)
=

1

2
log det

([
1 E[bnode(X)]

E[bnode(X)]T E[bnode(X)bnode(X)]T

]
+ diag

(
[0, l1, . . . , lp]

))
+
d

2
log(2πe),

where (f) holds by the Shur complement [1], and (g) holds be-
cause U is independent on bnode with statistics E[U ] = 0 and

E[UrU
T
r ] = diag(lr) with lr =

c3r
12

1mr . Here, 1mr is a 1-
valued vector in Rmr .

Note that each µ ∈ M(B) equals to E[B(X)]
under some valid p(·), and µ is composed of
E[{bnode(X), bnode(X)bnode(X)T }]. By using a map
Mν we defined, it can simply be expressed as[

1 E[bnode(X)]
E[bnode(X)]T E[bnode(X)bnode(X)]T

]
= M1[µ].

Finally,

A(θ) = max
µ∈M(B)

{〈µ,θ〉 −A∗(µ)}

≤ max
µ∈M(B)

{
〈µ,θ〉+

1

2
log det

(
M1[µ] +D

)}
+ f1.

where D = diag
(
[0, l1, . . . , lp]

)
and a constant f1 =

d
2

log(2πe) −
∑
r∈ID

mr log cr + C0 determined by the types
and dimension of nodes.

2 Proof of Corollary 3.2

By taking the relaxation of the dual, we can convert
the high-dimensional problem from Theorem 3.1 into the
following tractable form. Here, we introduce θ′ =
{ θ1

2
, . . . , θ1

2
,Θ11, . . . ,Θpp}, a slight variant of θ, for an alge-

braic simplicity on the derivation.

A(θ) ≤ max
µ∈M(B)

{
〈µ,θ〉+

1

2
log det

(
M1[µ] +D

)
+ f1

}
= max
µ∈M(B)

{
〈M1[µ],M1[θ′]〉+

1

2
log det

(
M1[µ] +D

)
+ f1 − 1

}
≤ 1

2
max

X�D,X11=1

{
〈X −D, 2M1[θ′]〉+ log detX

}
+ f1 − 1

≤ 1

2
max

X�0,X11=1

{
〈X, 2M1[θ′]〉+ log detX

}
−
〈
D,M1[θ]

〉
+ f1 − 1

=
1

2
max
X�0

min
v∈R

{
〈X, 2M1[θ′]〉+

1

2
log detX + v(X11 − 1)

}
−
〈
D,M1[θ′]

〉
+ f1 − 1

=
1

2
min
v∈R

(
max
X�0

{〈
X, 2M1+ν/2[θ′]

〉
+ log detX

}
− v
)

−
〈
D,M1[θ′]

〉
+ f1 −

3

2

=
1

2
min
v∈R

{
− log det

(
− 2M1+ν/2[θ′]

)
− v
}

−
〈
D,M1[θ′]

〉
+ f2,

where f2 = d
2

log(2πe)−
∑
r∈ID

mr log cr + C0 − 3
2

+ d
2

.

3 Proof of Theorem 3.4

By combining the upper bound Ã(θ) of Corollary 3.2 with the
regularized maximum likelihood equation in the paper, problem
(4), we find that minθ −〈µ̂,θ〉+A(θ)+Rλ(θ) is upper bounded
by the following:

min
θ
−〈µ̂,θ〉+A(θ) +Rλ(θ)

= min
θ∈Y

(
− 〈M1[µ̂],M1[θ′]〉+

1

2
min
ν∈R

{
− log det

(
− 2M1+ν/2[θ′]

)
− ν
}
−
〈
D,M1[θ′]

〉
+Rλ(θ′)

)
+ f2 + 1

=
1

2
min

ν∈R,θ∈Y

{
− 〈M1[µ̂] +D, 2M1+ν/2[θ′]〉

− log det
(
− 2M1+ν/2[θ′]

)
+ 2Rλ(θ)

}
+ f2 + 1

=
1

2
min

Θ∈Sd+1

{〈
M1[µ̂] +D,Θ

〉
− log det Θ +R2λ(Θ)

}
+ f3

where we replaced −2M1+ν/2[θ′] with Θ and Rλ(θ) with
Rλ(Θ).
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4 Proof of Lemma 4.1

For notational simplicity, we denote vec[A] = Ā as a vector by
stacking all the columns in consistent order. We define Bst:ij =
[Bs(Xs)Bt(Xt)]ij for 1 ≤ s, t ≤ p, 1 ≤ i ≤ ms, and 1 ≤
j ≤ mt. Likewise, denote Br:k = [Br(Xr)]k for 1 ≤ r ≤ p,
and 1 ≤ k ≤ mr . The same notation on any elements in Y is
applied. We define a term W k = M1[B(xk)] −M1[E[B(X)]]

and its average Ŵ = M1[µ̂] − M1[E[B(X)]] for n-samples
x = {x1, . . . , xn} . Note that {Wk}’s are the i.i.d.

We use the Chernoff bound on Ŵ . By abusing some notation,
θ + Est:ij is denoted as the unit increment of the θst:ij element.

Pr
[∥∥∥Ŵ∥∥∥

∞
> δn

]
≤ 2 exp

[
(−ntδn) +

n∑
k=1

log (MWk (t))

]
≤ 2 exp [−n (tδn − log MW1(t))] ,

where MW (t) is denoted as the moment generating func-
tion of W . We will get the upper bound on MW1(t) =
E[exp(M1[B(X)])] by following

E[exp(Bst:ij)] =

∫
exp[tBst:ij + 〈B(x),θ〉+ C(x)ν(dx)

−A(θ)− tE[Bst:ij ]]ν(dx)

=

∫
exp[〈B(x),θ + tEst:ij〉+ C(x)−A(θ + tEst:ij)ν(dx)

+A(θ + tEst:ij)−A(θ)− tE[Bst:ij ]]ν(dx)

=

∫
exp[A(θ + tEst:ij)−A(θ)− tE[Bst:ij ]]ν(dx)

(a)
=

∫
exp[t∇Ā(θ)

T
Ēab:ij +

1

2
vt2ĒTab:ij∇2A(θ̄)Ēab:ij − tE[Bst:ij ]]ν(dx)

(b)
=

∫
exp[tE[B̄(X)]T Ēab:ij +

1

2
vt2ĒTab:ij Cov(B̄(X))Ēab:ij

− tE[Bst:ij ]]ν(dx)

≤ exp

(
1

2
κBCov[B]

t2
)
,

where (a) holds due to Taylor expansion at θ with the value 0 ≤
v ≤ 1, (b) holds due to properties of first and second derivative of
the log-partition function for a exponential family, and (c) holds
due to ‖Eab;ij‖2 = 1.

Likewise E[exp(Br:k)] ≤ exp
(

1
2
κBCov[B]

t2
)

.

Therefore, from the
∥∥∥Ŵ∥∥∥

∞,2
≤ mmax

∥∥∥Ŵ∥∥∥
∞

, we get

Pr
[
‖W‖∞,2 > δn

]
≤ m2

max Pr

[
‖W‖∞ >

δn
mmax

]
≤ m2

maxp
22 exp[−n(t

δn
mmax

− 1

2
κCov[B]t

2)].

By setting t = δn/(mmaxκCov[B]), we get

Pr
[
‖W‖∞,2 > δn

]
≤ 2 exp

[
− n

2m2
maxκCov[B]

(
δ2
n −

2m2
maxκCov[B] log(mmaxp)

n

)]
≤ e−c1n,

where the last inequality holds for for δn ≥

2mmax

√
2κCov[B] log(mmaxp)

n
and for some positive uni-

versal constant c1.

5 Proof of Theorem 4.2

We use the primal-dual witness approach developed by Raviku-
mar et al [19] and keep their notation. The main difference is that
we analyze the optimality condition for the weighted group lasso
penalty.

By the optimality condition for group graphical lasso, the estima-
tor Θ must satisfy

M1[µ̂]−Θ + λnγw ◦ Z = 0 (2)

where Z ∈ R(d+1)×(d+1) is the subgradient at Θ with

Zst:ij =

{
0 if Θst = 0,
(Θst)ij
‖Θst‖F

otherwise
, (3)

for the block off-diagoanl parts and with a zero value for all other
elements in the matrix. Note that this implies ‖Z‖∞,2 ≤ 1 and
〈Θst, Zst〉F ≤ ‖Θst‖F .

From the primal-dual witness approach, let S be the set of edges
(excluding self-edges) and S be the set of non-edges.

Define the radius r that will eventually be used as an error mea-
sure ‖∆‖∞,2 =

∥∥∥Θ̂−Θ∗
∥∥∥
∞,2

.

5.1 Three Lemmas

In order to prove Theorem 4.2, we first present three Lemmas. In
Lemma 4.1, the remainder of the second order Taylor expansion
on g(Θ)|Θ=Θ∗ is expressed with the error ‖∆‖∞,2. Then, we
derive the sufficient condition ofW,R(∆) satisfying the optimal-
ity condition (1) in Lemma 4.2. Lastly, we derive the condition of
the radius r which upper bounds the error ‖∆‖∞,2.

Lemma 5.1 Under the assumption r := ‖∆‖∞,2 <

1/(3κΓ∗d
√
mmax), we get

‖R(∆)‖∞,2 ≤
3

2
d ‖∆‖2∞,2 κ

3
Σ∗ . (4)

Proof. For ‖u‖∞,2 = 1

|||∆|||∞,2 = sup
sin{0,1,...,p}

‖∆s,:u‖2

= sup
s∈{0,1,...,p},i∈{1,...,ms}

√
mmax

∥∥∆(s,i),:u
∥∥

2

= sup
s∈{0,1,...,p},i∈{1,...,ms}

√
mmax

√∑
t

∥∥∆(s,i),tut
∥∥2

2

= sup
s∈{0,1,...,p},i∈{1,...,ms}

√
mmax

√∑
t

∥∥∆(s,i),t

∥∥2

2
‖ut‖22

= sup
s∈{0,1,...,p},i∈{1,...,ms}

√
mmax

√∑
t

∥∥∆(s,i),t

∥∥2

2

= d
√
mmax ‖∆‖∞,2

For J =
∑∞
k=0(−1)k(Θ∗−1∆)k

∣∣∣∣∣∣∣∣∣JT ∣∣∣∣∣∣∣∣∣
∞,2
≤
∞∑
k=0

(−1)k
∣∣∣∣∣∣∣∣∣Θ∗−1

∆
∣∣∣∣∣∣∣∣∣k
∞,2
≤ 1

1−
∣∣∣∣∣∣Θ∗−1

∣∣∣∣∣∣
∞,2|||∆|||∞,2

≤ 3

2
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This claim is immediately applied to the Lemma 5 of Ravikumar
et al.

(Θ∗ + ∆)−1 = Θ∗
−1 −Θ∗

−1
∆Θ∗

−1
+ Θ∗

−1
∆Θ∗

−1
∆JΘ∗

−1

R(∆) = (Θ∗ + ∆)−1 −Θ∗
−1

+ Θ∗
−1

∆Θ∗
−1

= Θ∗
−1

∆Θ∗
−1

∆JΘ∗
−1

|||R(∆)|||∞,2 ≤
∣∣∣∣∣∣∣∣∣Θ∗−1

∣∣∣∣∣∣∣∣∣
∞,2
|||∆|||∞,2

∣∣∣∣∣∣∣∣∣Θ∗−1
∣∣∣∣∣∣∣∣∣
∞,2

∥∥∥Θ∗−1
JT∆

∥∥∥
∞,2

≤
∣∣∣∣∣∣∣∣∣Θ∗−1

∣∣∣∣∣∣∣∣∣2
∞,2
|||∆|||∞,2

∣∣∣∣∣∣∣∣∣JT ∣∣∣∣∣∣∣∣∣
∞,2
‖∆‖∞,2

≤
∣∣∣∣∣∣∣∣∣Θ∗−1

∣∣∣∣∣∣∣∣∣3
∞,2

∣∣∣∣∣∣∣∣∣JT ∣∣∣∣∣∣∣∣∣
∞,2
|||∆|||∞,2 ‖∆‖∞,2

Lemma 5.2 Suppose that the incoherence condition holds and
max{‖W‖∞,2 , ‖R(∆)‖∞,2} ≤

wminwmaxα
4(wmax+wmin)

λn. Then
‖ZSc‖∞,2 < 1.

Proof. By utilizing the fact that ∆Sc = 0, we can derive

Γ∗SSD̄S − R̄S + W̄S + λnγ̄w ◦ Z̄S = 0 (5)

Γ∗ScSD̄S − R̄Sc + W̄Sc + λnγ̄w ◦ Z̄Sc = 0. (6)

Combining two equation above gives

λnγ̄w ⊗ Z̄Sc

= −Γ∗ScSD̄S + R̄Sc − W̄Sc

= −Γ∗ScS(Γ∗SS)−1(W̄S − R̄S) + λnΓ∗ScS(Γ∗SS)−1(γ̄w ◦ Z̄Sc)

+ (R̄Sc − W̄Sc),

where γw is the weight matrix with (γw)st;ij = wst, and γ̄w is
its vector version.

Taking ‖·‖∞,2 of both sides gives, for the elementwise product
A ◦B between the same size of matrices A,B,

λn
∥∥γ̄w ◦ Z̄Sc

∥∥
∞,2

= (
∣∣∣∣∣∣Γ∗ScS(Γ∗SS)−1

∣∣∣∣∣∣
∞,2 + 1)(

∥∥W̄S

∥∥
∞,2 +

∥∥R̄S∥∥∞,2)

+ λn
∥∥Γ∗ScS(Γ∗SS)−1(γ̄w ◦ Z̄Sc)

∥∥
∞,2

(a)

≤ (
wmin
wmax

(1− α) + 1) · 2 · wminwmaxα

4 (wmax + wmin)
λn

+ wmax
∣∣∣∣∣∣Γ∗ScS(Γ∗SS)−1

∣∣∣∣∣∣
∞,2λn

≤ λnwmin
α

2
+ λnwmin(1− α)

≤ λnwmin,

where (a) holds due to the assumptions on ‖W‖∞,2 , ‖R‖∞,2,
and incoherence condition on Γ∗ScS(Γ∗SS)−1.

Based on
∥∥γ̄w ◦ Z̄Sc

∥∥
∞,2 ≥ wmin

∥∥Z̄Sc

∥∥
∞,2 and the inequality

above, we have
∥∥Z̄Sc

∥∥
∞,2 < 1.

Lemma 5.3 For the radius r := 2κΓ∗(‖W‖∞,2 + wmaxλn) ≤
min{1/(3κΣ∗d

√
mmax), 1/(3κ3

Σ∗κΓ∗d)}, the error ‖∆‖∞,2 is
bounded by r.

Proof. Set the radius r := 2κΓ∗(‖W‖∞ + λnwmax) and
suppose r ≤ min{1/(3κΣ∗d

√
mmax), 1/(3κ3

Σ∗κΓ∗d)}. From

Brouwer’s fixed point theorem [19], we can show that it suffices
to show F (∆̄S) ≤ r for ‖∆‖∞,2 ≤ r where F is the map defined
by

F (∆̄S) = (Γ∗SS)−1vec[(Θ∗
−1

∆)2JΘ∗
−1

]S

− (Γ∗SS)−1(W̄S + λnγ̄S ⊗ Z̄S).

Let T1 be the first term and T2 be the second term.

The second term ‖T2‖∞,2 ≤ κΓ∗(‖W‖∞+λnwmax) = r/2 by
our choice of r at the begining.

The first term

‖T1‖∞,2 ≤ κΓ∗

∥∥∥vec[(Θ∗
−1

∆)2JΘ∗
−1

]S

∥∥∥
∞,2

≤ κΓ∗ ‖R(∆)‖∞,2
(a)

≤ κΓ∗
3

2
κ3

Σ∗
√
mmaxd ‖∆‖2∞,2

≤ 1

2
(3κΓ∗κ3

Σ∗d
√
mmax · r)r

(b)

≤ r

2
,

where (a) holds due to Lemma 4.1 under the assumption r ≤
1/(3κΣ∗d), and (b) holds under the assumption on r ≤

1
3κ3

Σ∗κΓ∗
√
mmaxd

. Therefore, the error is bounded by r :=

2κΓ∗(‖W‖∞,2+wmaxλn) ≤ min{1/(3κΣ∗d), 1/(κ3
Σ∗κΓ∗d)}.

Finally, we are ready to present the proof of main theorem.

5.2 Main Proof

Assumptions. We make three assumptions, partly adopted from
Loh et al. [15] and Ravikumar et al. [19].

1. The PE-MRF has an underlying graphical structure with sin-
gleton separator sets with the maximum degree d.

2. Boundedness condition: The expected value of the sufficient
statistic is bounded, and the elementwise absolute value of
Cov[B(X)] is bounded by κCov[B] <∞.

3. Incoherence condition:
∣∣∣∣∣∣ΓScS (ΓScS)−1

∣∣∣∣∣∣
∞,2 ≤

wmin
wmax

(1− α) for some α ∈ (0, 1].

Theorem 5.4 Suppose a PE-MRF X satisfies all
three assumptions. For a regularization parame-

ter λn > 8(1+wmin/wmax)
α

κCov[B]

√
log(mmaxp)

n
,

let Θ̂ be the unique solution of the group graphi-
cal lasso. If the number of samples is given by n >
c2(κΣ∗ , κΓ∗ , κCov[B], κCovmin , wmax, wmin, α) log(mmaxp),
then the following two statements about Θ̂ hold with probability
at least 1− e−c1n:

1.
∥∥∥Θ̂−Θ∗

∥∥∥
∞,2

< 2κΣ∗

(
α

4(1+wmin/wmax)
+ wmax

)
λn

where Θ∗ = (M1[E[B(X)]] +D)−1.

2. The recovered edge set E(Θ̂) = {(s, t) |
∥∥∥Θ̂ij

∥∥∥
2
>

2κΣ∗

(
α

4(1+wmin/wmax)
+ wmax

)
λn} becomes the same

as the real edge set E(Θtrue).
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Here d is the maximum degree of the graph structure, and
c2(κΣ∗ , κΓ∗ , κCov[B], κCovmin , wmax, wmin, α) = 4κ2

Γ∗ (1 +
4(wmin+wmax)

α
)2κ2

Cov[B] max{9κ2
Σ∗d2, 9κ6

Σ∗κ2
Γ∗d2, 2/κCovmin}.

Proof. Let’s set δn ≥ 2mmax
√
κCov[B]

√
log(mmaxp)

n
, the event

A = {‖W‖∞,2 < δn}. Then, by Lemma 4.1, Pr [A] > 1 −
e−c1n.

Now suppose such an event A occurs. Then, the choice of
λn = c3δn where c3 = 4(wmax+wmin)

wminwmaxα
satisfies the assump-

tion of Lemma 4.2. Moreover, the error can be expressed with δn
(or λn) as

r := 2κΓ∗(‖W‖∞,2 + λnwmax) ≤ 2κΓ∗(1 + c3wmax)δn.

We suppose

2κΓ∗(1 + c3wmax)δn ≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗κΓ∗d

}
. (7)

This assumption is equivalent to imposing the following restric-
tion on the number of samples n:

2κΓ∗(1 + c3wmax)
√
κCov[B]

√
log(mmaxp)

n
≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗κΓ∗d

}
,

or

n ≥ 4κ2
Γ∗(1 +

4 (1 + wmax/wmin)

α
)2κCov[B] max

{
9κ2

Σ∗d2, 9κ6
Σ∗κ2

Γ∗d2} .
Therefore,

‖R(∆)‖∞,2 ≤
3

2
d ‖∆‖2∞,2 κ

3
Σ∗

(a)

≤
{

6κ3
Σ∗κ2

Γ∗(1 + c3wmax)2δn
} λn
c3

≤ λn
c3
,

where (a) holds due to Lemma 4.1.

Finally, since this choice of λn = c3δn satisfies the assumptions
on Lemma 4.3 from (7), we conclude that the error ‖∆‖∞,2 is

bounded by r = 2κΣ∗

(
α

4(1+wmin/wmax)
+ wmax

)
λn under

the event A. Thus, the statement holds with probability at least
1− e−c1n.

Now, we move to the second statement. Note that, by the
Schur complement, the edge counterpart of (Θ∗) is equivalent
to the inverse covariance matrix of bnode(X), i.e., Θ∗edge =

(Cov[bnode(X)])−1. According to Corollary 2 from Loh et al.
[15], which was established only for discrete models but can be
extended to PE-MRFs with node-potential bnode(x), our general-
ized inverse covariance matrix (Cov[bnode(X)])−1 has the same
matrix structure as the real graphical strcture with singleton seper-
ator sets. Therefore, it suffices to estimate Θ∗ to find the graphical
structure of a PE-MRF.

Recall that the first statement demonstrates that the elementwise
difference between our estimator Θ̂ and Θ∗ is at most r. There-
fore, for the minimum value κCovmin among nonzero absolute
elements in (Cov[bnode(X)])−1, the graphical structure between
Θ̂ and Θ∗ matches if r < κCovmin/2.

As a result, the recovered edge set E(Θ̂) = {(s, t) |
∥∥∥Θ̂ij

∥∥∥
2
>

2κΣ∗

(
α

4(1+wmin/wmax)
+ wmax

)
λn} becomes the same as the

real edge set E(Θtrue) with probability at least 1− e−c1n.
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