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1 Proof of Theorem 3.2

We derive a convex upperbound on log-partition A(6). By the
convexity,

A(8) = sup (11, 0) — A () ()
REY
where A*(u) is the conjugate function A*(p) =

Supgcy (i, ) — A(@). One key fact is that A™(u) can be
expressed as the Shannon entropy as follows [3]:

—H(p(z;60(p))) H € M?(B)
A" () = —limg, yp H(p(z;8(p,))) w1 € bd(M(B)) .
+00 otherwise

Here M(B), M°, and bd(M) is the mean parameter (the set
of realizable expected sufficient statistic), its interior, is its bound-
ary of M respectively. And O(p) is the unique natural parame-
ter satisfying u = Y p(z;0)B(x) for p € M°(B), and
{p,} € M°(B) is a sequence converging to i € bd(M(B)).

Recall that we denote d = >.7_,m, and bpode(z) =
vec[B1(X1),...,By(X,)] € R

Express H(X) as H(bnode(X)). First, we will derive an upper-
bound of H (p(z;6)) = H(X) in terms of H (bnode(X)). By the
chain rule for entropy [2]

H (X, bnoge(X)) = H(X) + H(bnoae(X) | X)

< H(X)

where (a) holds because the entropy is zero when the variable is
deterministic on the condition, i.e., the function of the condition
[2]]. From the other direction of chain rule,

H(X, bnode(X)) = H(bnodae (X)) + H(bnode (X) | X)

P
© H(bnoae(X)) + 3" HX, | broae(X), X1, ..., Xo1)

< Hboae (X)) + S H(X, | Bo(X)

r=1

where (b) holds by applying chain rule successively, and (c) holds
because conditioning reduces entropy. Note that, for a known
exponential family distribution, H (X, | B-(X)) is constant. For
examples in a Gaussian, Dirichlet, Gamma, Wishart, X, is also
a function of B,(X,), meaning H(X, | B.(X)) = 0. For a
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Laplacian distribution, H (X, | B-(X)) = H(Sign(X,)) = 1.
Therefore, we can conclude that H(X) = H (bpode(X)) + Co
where Co = >-P_, H(X, | B-(X)) is the constant determined

by the types of nodes.

Now we derive an upper bound on entropy H (bnode(X)). We
will utilize the fact that, among any continuous random vectors
with the same covariance matrix, Gaussian random vector maxi-
mized the entropy. To do so, we need to construct an additive and
independent random vector U € R? 50 that byode(X) + U be-
comes a continuous random vector and its entropy H (bnode (X )+
U) is closely related to H (bnode(X)).

Construct U. For each discrete node r € Zp C {1,...
fine the distance ¢, = ;glfx ||Br(a) — Br(b)
a cXy

domain of its sufficient statistic B,.(X;-). we define ¢, = 0 other-
wise.

7p}7 de'
> 0 in the

[

construct a d-dimensional random vec-
vec[Ui,...,Up] where each element of
,Urm, |7 € R™ is independently distributed as

Now, we
tor U =

Uy = [Ura, ...

7m7'}
)

U unif[—¢;/2,¢,/2] r €Zpandi, € {1,...
e 0 otherwise

and is independent to byo4e(X). Since U has a sufficiently nar-
row range and is independent on by,oqe (X)), bnode (X ) is uniquely
determined by the (continuous) random vector bpogde (X) + U.

Express H (bnode (X)) as H (bnode (X) + U). By the chain rule,

H(bnode (X) + U, bnode (X)) L H(bpoae (X) + U),

where (d) holds because bynode(X) is deterministic under
brode(X) + U. On the other hand,
H(bnode (X) + U7 bnode (X)

- H(bnode (X ) + H(bnode (X) + U ‘ bnode (X))
< H (bnoae (X)) + H(U)

= H(bnode(X)) + Z (m,- log C’y'),

r€lp

)
)

where (e) holds because Shannon Entropy is invariant under a
transition and under a condition on independent random vectors.

Therefore we conclude H (bpode(X)) = H(bpode(X) +U) —
ZTGID m, logec.
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Entropy Bound on H (by,04.(X)+U). Since (differential) Shan-
non entropy of any continuous random vector is upper bounded by
that of a Gaussian random vector with the same covariance ma-
trix,

H(bnoae(X) +U) < %l log(2me) +

d 1
v log(27re) + 3 log det (

1 E[bnode (X
|:E [bnode (X) + U]T

\_/

9) E[bnode(X)] ]

1
3 ogde ( {E[bmde(X T Blbaoae (X)bnoae (X))

d
+ diag ([0, 11, .. ., lp})> + 5 log(2me),

where (f) holds by the Shur complement [1]], and (g) holds be-
cause U is independent on byode with statistics E[U] = 0 and
E[U.U}] = diag(l.) with I, = 121,,“,.
valued vector in R™7.

Here, 1,,, is a 1-

Note that each p € M(B) equals to E[B(X)]
under some valid p(-), and p is composed of
E[{bnode (X), bnode(X)bnoae(X)"}]. By using a map

M,, we defined, it can simply be expressed as

E[bnode (X )]

1
{E[bmde(X)]T E[bnode(X)bmde(X)]T} = Mip].

Finally,
A(0) = 6) — A"
(0) = max {(n0) ()}
1
< =1 M D .
 Jax {(,u,@) +3 ogdet (Mi[p] + )} + f1
where D = diag ([0,/1,...,l,]) and a constant f; =

% log(2me) — 3=, .7, mrloger + Co determined by the types
and dimension of nodes.

% log det Cov [bnode (X) + U] {071

o)
E[(bnode(X) + U) (bnode(X) + U)7]

2 Proof of Corollary 3.2

By taking the relaxation of the dual, we can convert
the high-dimensional problem from Theorem 3.1 into the
following tractable form. Here, we introduce 6 =
R 2 L ©11,...,0pp}, a slight variant of 0, for an alge-
braic simplicity on the derivation.

A(0) < max  {(p,0)

1
e 5 log det (M1 [n] + D) + fl}

max { (M1 [

], M1[6'])
HEM(B)

+ %logdet (M1[u] +D) + f1- 1}

| /\
B
I
><

5 xomax _ {(X =D, 2Mi[0)) +logdet X} + f1 — 1
11=

—_

< - max

2 X-0,X11=1 {<X’ 2M[0']) + logdetX} -

(D, M:[6]) + f1 — 1

= 7maxm1ﬁ (X,2M:[0']) + %logdetX—i—v(Xll -1}
_<D,M1[9l]>+f1—1
( max {(X 2M1 4, )210'] >+logdetX} )

_ <D,M1[9,}> + fi *g

[

|
=
=}

— logdet (— 2M4,,2[0']) — v}

1.
— (D, Mi1[0']) + f2,

where f, = 4 log(2me) — > ez, mrloger + Co — s+

3 Proof of Theorem 3.4

By combining the upper bound A(6) of Corollary 3.2 with the
regularized maximum likelihood equation in the paper, problem
(4), we find that ming —(f, 8) + A(0) + R () is upper bounded
by the following:

,0) + A(0) + Rx(0)

meln—</,l,
1 .
- 1316%;1 ( (M1 [fr], M1[0']) + 3 II/Tlellrll{ — logdet ( — 2M4,/2[0'])

—y}—(D,Ml ) + RA(0 )>+f2+1

1 .
== min

: { - i+ D2l
veR,0ey

—logdet (—2M1,,2[6]) + sz(e)} +fo+1

1 N
~ min {<M1[u]+D,®>flogdet®+R2,\(®)} + f3
2 @esdtl

where we replaced —2M.,5[0'] with ® and Rx (@) with
RA(©).
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4 Proof of Lemma 4.1

For notational simplicity, we denote vec[A] = A as a vector by
stacking all the columns in consistent order. We define B¢.i; =
[Bs(Xs)Be(X¢)]sj for 1 < s,8 < p,1 <i < mg,and1 <
Jj < my. Likewise, denote B,., = [By(X,)]x forl < r < p,
and 1 < k < m,. The same notation on any elements in Y is
applied. We define a term W* = M, [B(z")] — Mi[E[B(X)]]
and its average W = M, [f1] — M [E[B(X)]] for n-samples
x = {z',...,2™} . Note that {W}’s are the i.i.d.

We use the Chernoff bound on W. By abusing some notation,
0 + E:.;; is denoted as the unit increment of the 0,;.;; element.

Pr [HWHOO > 5n] < 2exp [(nt5n) + ilog My« (1))

< 2exp[—n (15, — log M1 (£))],
where My (t) is denoted as the moment generating func-
tion of W. We will get the upper bound on My (t) =
Elexp(M;[B(X)])] by following
Efexp(Bst:ij)] = /exp[tBst:w + (B(x),0) + C(z)v(dx)
— A(O) — tE[Bst;ij”V(d.Z‘)

= /exp[(B(w), 0 +tEs.ij) + C(x) — A(0 + tEs.iz)v(dx)

+ A(G + tEst;ij) - A(O) — tE[BSt;i]'HZ/(d.’L')
= /exp[A(O + tESt;ij) — A(O) — tE[BSt;ij”I/(dl')

(a)

_ _ 1 .- _ _
® / Pt BIB(X)|" Bapii + 501 By Cov(B(X)) Butsi

— t E[Bst.;5]|v(dx)

1
S exp <§K'BCOV[B] t2> ’

where (a) holds due to Taylor expansion at @ with the value 0 <
v < 1, (b) holds due to properties of first and second derivative of
the log-partition function for a exponential family, and (c) holds
due to HEab;inQ =1.

Likewise E[exp(B;:x)] < exp (%”Bcov[g]tQ)'

Therefore, from the HW H < Mumaz
00,2

WH , we get
oo

on
Mmax

1 2
Y ov t .
o — 3 fCoviB] )]

Pr [||W\|oo,2 > 6n] < Mipeq Pr [HWIIOO >

On

S mfnazp22 exp[—n(t
By setting ¢ = 6/ (Mmaskcov(p])s We get

Pr[[ Wil > ]

_ _ 1 .- _
= /exp[tVAW)TEab:ij + ivtzEZb:ijv2A(0)Eﬂbiij — tE[B.. N8

5 Proof of Theorem 4.2

We use the primal-dual witness approach developed by Raviku-
mar et al [19] and keep their notation. The main difference is that
we analyze the optimality condition for the weighted group lasso
penalty.

By the optimality condition for group graphical lasso, the estima-
tor ® must satisfy

Mip] — O+ Mywo Z =0 2)

where Z € R+ X(@+D) jg the subgradient at @ with

0
Zstiij = (©st)ij
lOstll g

if Q4 =0,
otherwise

) 3)

for the block off-diagoanl parts and with a zero value for all other
elements in the matrix. Note that this implies || Z]|, , < 1 and

<®st7 Zst>F S ||®StHF

From the primal-dual witness approach, let S be the set of edges
(excluding self-edges) and S be the set of non-edges.

Define the radius r that will eventually be used as an error mea-
sure || Al , = Hé) — e ‘

00,2

5.1 Three Lemmas

In order to prove Theorem 4.2, we first present three Lemmas. In
Lemma 4.1, the remainder of the second order Taylor expansion
|e=e~ is expressed with the error ||A||_ ,. Then, we
derive the sufficient condition of W, R(A) satisfying the optimal-
ity condition (1) in Lemma 4.2. Lastly, we derive the condition of
the radius  which upper bounds the error [[A[[ _ ,.

Lemma 5.1 Under the assumption r = [All , <
1/(3kr+dy/Mmaz ), we get
3 )
IR(A) | 2 < SANANZ 5 @

Proof. For |Ju|| _ , =1

A 2

sup || A ull,
= sup

sin{0,1,...,p}
Vil [|A¢s 0l
s€{0,1,...,p},ie{1,....ms}
= sup

A 5,1 2
36{0,1,~~,p},ie{l,m,ms}m ; 1A, ue

= sup
se{0,1,..., prie{l,..., m

}m\/z 1A oy e 2
s t
= su

VMmaz, | A S,1 :
56{0,1,4.4,;7},'})6{1,.4.,777,5} mn ; H (e )7t||2

< 2exp {—

2
2mmaa: KCov n

< e

= k]

where the last inequality holds for for §,

2Kcov[B] log(Mmaaxp)
2"TLmaac\/ =

n
versal constant cy.

and for some positive uni-

n (62 _ 2m72naz KCov[B] log(mmazp) >:|
B\

= dv/Mmaz [ All o

For J =3 0° (-1)*(©@*tA)*

. < Sl < e

k=0

IN

o2~ 1= [0 LAl 2
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This claim is immediately applied to the Lemma 5 of Ravikumar
et al.

(@* + A)71 _ e*—l _ @*—IAG)*—I + @*—IA(_)*—IAJG*—I

RA)=(© +A) ' -0 ' te A = e Al T ATe !

(RTINS (1ch | T

ol

00,2

<

‘9*—1

’ A
Al

<fleI
- 0,2

Lemma 5.2 Suppose that the incoherence condition holds and
max{[[Wll o, [R(A)ll o} < qrazifieisAn. Then
1Zs¢lloo,2 < 1.

Proof. By utilizing the fact that Age = 0, we can derive

IssDs — Rs +Ws + AFwo Zs =0 5)
IsegDs — Rse + Wse + ApFuw © Zse = 0. 6)

Combining two equation above gives

AnYw ® Zse

- _FZCSDS + RSC — WSC

= —T%es(T5s) ™ (Ws — Rs) + Anl5e5(Tss) ™" (Jw © Zse)
+ (Rse — Wse),

where v, is the weight matrix with (yw)st;i; = wst, and Jy is
its vector version.

Taking ||-|| .., , of both sides gives, for the elementwise product
A o B between the same size of matrices A, B,

OZSC

An H o 00,2
= (1755 (C55) "l o o + DUWsl o+ [R5l o)
+ A ||T5es(Dss) ™ (Fw © Zse)

}00,2

(a) Wmin WminWmaz &
< 1-— 1)- 20—\
B (wmaz ( a) * ) 4 (wmaz + wmzn)

+wmazmrgcs(rgs)ilH|oo,2/\”

S )\nw'min7

where (a) holds due to the assumptions on ||W|| IRl

00,27 00,2°

and incoherence condition on T'5eg(T5g) ",

Based on H% o Zse

00,2 > Wmin HZSC
0.2 < 1.

0.2 and the inequality

above, we have HZsc

Lemma 5.3 For the radius v := 2+ (|[W|| 5 + WmazAn) <

min{1/(3ksxd\/Mmaz), 1/ (355« kr=d)}, the error 1Al oo is
bounded by r.

Proof.  Set the radius r := 2kp=(||W]||, + A\Wmaa) and
suppose 7 < min{1/(3ks*d\/Mmaz), 1/(35%«kr=d)}. From

@**UTAH

T\ Al 2 121

Brouwer’s fixed point theorem [19], we can show that it suffices
to show F'(Ag) < rfor [|A||, 5 < 7 where F is the map defined

by
F(As) = (Tsg) 'vec[(®'A)2JO" s
— (T5s) " (Ws 4+ 75 @ Zs).
Let T3 be the first term and 75 be the second term.
The second term || T3], 5 < k= (W], + Anwmaa) = /2 by

>otr choice of r at the begining.
T
‘J HLO ) HAHothe first term

[T1]]og 5 < rir-

vee|(® ' A)2 70" s

00,2
< wre [[R(A) ] 2

(a) 3 3 2
S Kr* 5[{2* \/md ||A||oo,2

1
(3kr= Kedy/Mmas - r)r

<

S
N

IN
ol NI

I

where (a) holds due to Lemma 4.1 under the assumption r <
1/(3ks+d), and (b) holds under the assumption on r <

1 : —
T s ad” Therefore, the error is bounded by r :=

2rrs (|W ] e g+ oz An) < min{1/(3rs-d), 1/ (k. mr-d)}.

Finally, we are ready to present the proof of main theorem.
5.2 Main Proof

Assumptions. We make three assumptions, partly adopted from
Loh et al. [15] and Ravikumar et al. [19].

1. The PE-MRF has an underlying graphical structure with sin-
gleton separator sets with the maximum degree d.

2. Boundedness condition: The expected value of the sufficient
statistic is bounded, and the elementwise absolute value of
Cov[B(X)] is bounded by kcov(p) < 00.

ITses (Dses) ™|
Wmin (] — ) for some o € (0, 1].

Wmax

3. Incoherence condition: <

00,2

Theorem 5.4 Suppose a PE-MRF X
three  assumptions. For a

satisfies  all
regularization — parame-

er A, S 80t wmin/Vmaz) i [108(Tmasp)
let © be the unique solution of the group graphi-
cal lasso. If the number of samples is given by n >

C2 (HE* s RT*, K/Cov[B]a KRCov,in s Wmaz, Wmin, Oé) log(mmazp)y
then the following two statements about © hold with probability
atleast1 — e 1":

1. H@ — O _, < 2&2* (m +U}ma9r) )\n
where ®* = (M [E[B(X)]] + D)fl,

2. The recovered edge set E(®) = {(s,t) | Hé”

Qs ( o 5 + wmu) An} becomes the same

4(1+Wmin/Wmaz

as the real edge set E(@"°).

>
2
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Here d is the maximum degree of the graph structure, and
2
C2 (RE*aKF* » KCov[B]) KCovin » Wmaz, Wmin, a) = 4K~ (1 +
4<wmin+wmaz))2 2
[e3

Proof. Let’s set 0n > 2Mmax+/KCov(B]\/ w, the event
A = {||W]| < 0n}. Then, by Lemma 4.1, Pr[A4] > 1 —

—cin

00,2
(&

Then, the choice of
satisfies the assump-

Now suppose such an event 4 occurs.
4 )
An = c36, wWhere c3 = A(Wmaz+Wmin)

WminWmax

tion of Lemma 4.2. Moreover, the error can be expressed with §,,
(or \p) as

ri= 2/{1"*(HW||0072 + AMWmaz) < 267+ (1 4 c3Wmaz )on.
We suppose

1 1
2 * 1 5 max 571 < i Brsrd’ 33 pred ' 7
k= (1 + €3Wmaz)dn < min { 3kx+d 3%%*Hr*d} @

This assumption is equivalent to imposing the following restric-
tion on the number of samples n:

2“1"* (1 + C3wmam)\/ KJCOV[B]

or

1 max .
log(mmasp) mm{
n

4 (1 + wmaz/wmin)

n > 4rie (1 +
!

Therefore,
R(A < fgd Al? 3
H ( )”00,2 =9 ” Hoo,2 Kz

(a) A,
< {6!{%* 1612"* (1 + C3wmax)26n} Ci
3

A

<
_037

where (a) holds due to Lemma 4.1.

Finally, since this choice of A, = ¢3J,, satisfies the assumptions
on Lemma 4.3 from (7), we conclude that the error [|Al|__, is

bounded by r = 2kx« (m + wmam) Arn under

the event .A. Thus, the statement holds with probability at least
1—e ™,

Now, we move to the second statement. Note that, by the
Schur complement, the edge counterpart of (®*) is equivalent
to the inverse covariance matrix of bnode(X), ie., Oz ¢
(Cov[broae(X)]) . According to Corollary 2 from Loh et al.
[15], which was established only for discrete models but can be
extended to PE-MRFs with node-potential b,,,4¢ (), our general-
ized inverse covariance matrix (Cov[b,oqc(X)]) ™" has the same
matrix structure as the real graphical strcture with singleton seper-
ator sets. Therefore, it suffices to estimate @™ to find the graphical
structure of a PE-MRF.

Recall that the first statement demonstrates that the elementwise
difference between our estimator @ and ®* is at most r. There-
fore, for the minimum value Kcov,,;,, among nonzero absolute
elements in (Cov[byode(X)]) ™", the graphical structure between

©® and ®* matches if r < KCovin /2

2 12 .6 2 g2
KGov(p) Max{9ks+d", 9kyw k1= d”, 2/ KCov i |-

>

As a result, the recovered edge set E(©) = {(s, 1) | H(:)”
2

k5% (m + wmaz) Ar } becomes the same as the

real edge set E£(©"“¢) with probability at least 1 — e~ 1",
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