Gradient Actor-Critic Algorithm under Off-policy Sampling and Function Approximation

Youngsuk Park

PhD Candidate, Stanford University

Dec 3, 2018

Outline

- RL introduction
- ▶ RL background
 - Class of RL algorithm
 - Modularity and scalablity of RL
- ▶ New actor-critic method: gradient actor-critic (GAC)
- Empirical studies
 - simple two-state examples
 - classic control problems
 - atari game and mojuco environment (next)

Introduction: Reinforcement Learning Framework

Consider the following interface

- agent's goal is to select actions to maximize long-term rewards
 - long-term rewards is called *value* V
 - learn policy $\pi(\text{state})$ =action, rule of how to act on state
- ▶ how can agent achieve the goal efficiently?
 - cannot store/refer to all past history, e.g.) #state = 10^{170} in Go
 - use RL that has the collection of algorithms to find optimal policy

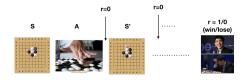
Introduction 3

Background: Value-based Method

Q-learning is one of value-base methods

ightharpoonup predictor learns Q(s,a) value, future rewards at state s for action a

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r + \max_{a} Q(s', a) - Q(s, a)]$$



- control is determined by Q-value in prediction
- pros: online learning, etc
- cons: does not scale for continuous (high-dim discrete) actions space

Background: Policy Gradient Method

REINFORCE is one of policy gradient methods

- ▶ policy π is parameterized with θ , e.g.) $\pi(a \mid s; \theta) = \mathcal{N}(\theta^T \phi(s), 1)$
- \blacktriangleright learns policy parameter θ

$$\theta \leftarrow \theta + \beta (\sum_{i=t}^{\infty} r_i - b) \nabla \ln \pi$$

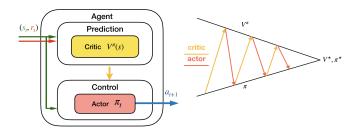
where b is some baseline

- no prediction/estimation of any value w.r.t π
- cons: have to wait long time (off-line), etc

- pros: scales well for continuous action space, etc

Background: Actor-Critic Methods

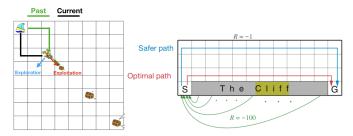
actor-critic methods is hybrid of value-based and policy gradient methods



- \triangleright critic (in prediction) learns to estimate V^{π} , giving feedback to actor
- lacktriangle actor (in control) improves policy π and generates actions
- overcomes weakness of previous two methods
 - scalable for continuous action space (vs. value-based)
 - online learning (vs. policy gradient)
- has two separate components

Background: Control with Exploration/Exploitation

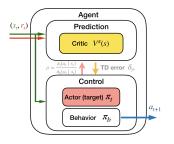
- in control, exploration/exploitation can be important
 - just exploit via best policy learned so far (from history)
 - or maybe consider to explore more (for the better future)



- ▶ Q) while exploring environment, can we still learn optimal policy?
 - yes, we can via off-policy learning!
 - behavior policy π_b just generates actions, target policy π_t is learned

Gradient Actor-Critic for Off-Policy

▶ ¹Off-PAC



(critic)
$$w \leftarrow w + \alpha \rho \delta \phi(s)$$

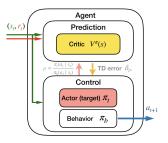
(actor) $\theta \leftarrow \theta + \beta \rho \delta \nabla \ln \pi$

– state feature
$$\phi(s)$$
, TD error $\delta = r(s,a) + \gamma w^T \phi(s') - w^T \phi(s)$ – ratio $\rho = \frac{\pi_t(a|s)}{\pi_b(a|s)}$

¹Degris, T., White, M. and Sutton, R. S. (2012). Off-Policy Actor-Critic. Gradient Actor-Critic

Gradient Actor-Critic for Off-Policy

• (new) gradient actor-critic (with parameter λ)



(critic)
$$w \leftarrow w + \alpha \rho \delta e^{\lambda}$$

(actor) $\theta \leftarrow \theta + \beta \rho \delta \psi^{\lambda}$

- ratio $\rho = \frac{\pi_t(a|s)}{\pi_b(a|s)}$
- $-e^{\lambda}$ is the combination of $(\phi(s_t),\ldots,\phi(s_0))$
- $-\psi^{\lambda}$ is the combination of $\nabla \ln \pi(a_t \mid s_t), \ldots, \nabla \ln \pi(a_0 \mid s_0)$

Properties of Gradient Actor-Critic

lacktriangle GAC allows bootstrap parameter $\lambda \in [0,1]$

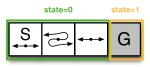
(critic)
$$w \leftarrow w + \alpha \rho \delta e^{\lambda}$$

(actor) $\theta \leftarrow \theta + \beta \rho \delta \psi^{\lambda}$

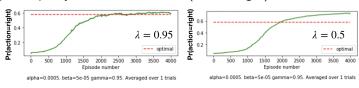
where λ decides how much remember/forget past features

- prove GAC converges to optimal for $\lambda = 1$
- show that Off-PAC can have bias (see in examples later)
- in practice, choose $\lambda=1-\epsilon$ for less variance but (potential) bias and
- \blacktriangleright prove its bias is within $O\left(\frac{\gamma}{(1-\gamma)^2}\epsilon\right)$

Examples 1: Short Corridor



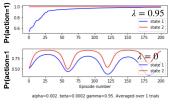
- 4 corridors where 2nd corridor is abnormal
- agent can only distinguish goal or non-goal corridor
- ▶ optimal policy is stochastic with Pr(action=right)= 0.6

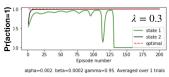


- **b** behavior policy is uniform-random, still learn optimal with $\lambda \approx 1$
- ▶ large biased solution for $\lambda < 0.8$
- note Q-learning cannot learn optimal

Examples 2: θ **to** 2θ **Counter example**

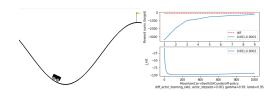
- \blacktriangleright two state s=1,2
- optimal policy is taking action 1 for every state
- use the feature $\phi(s=1)=1$, $\phi(s=2)=2$, thus $V_{\theta}(s)=s\theta$





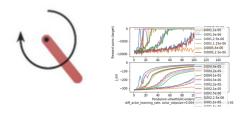
- with $\lambda \approx 1$, GAC learn optimal
- ▶ Off-PAC ($\lambda = 0$) fails

Examples 3: Mountain Car



- continuous state space (position, velocity) in R²
- discrete action space [left, stay, right]
- car moves according to dynamical sytem
- lacktriangleright reward is -1 if it has not reached the goal yet
- **b** behavior policy is uniform random (timesteps to reach > 5000)
- every 100 episodes, evaluate the performance of target policy

Examples 4: Pendulum



- continuous state (angle, angular velocity), represented by tilecoding
- continuous action (torque), modeled by Gaussian
- reward is based on position and velocity
- goal is to make pendulum stand

Examples 5: Mojuco and Atri Game (Next)

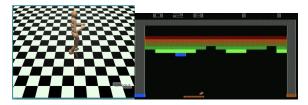


Figure: humanoid in Mojuco and atari game in Gym

- ▶ input is just pixel information
- need to use DL to represent state from input

Summary & Future Work

- ▶ RL agent has two components: prediction and control
- actor-critic is scalable on action and state space (under function approx.)
- off-policy (with target and behavior) can allow distributed learning
- ► GAC is (first) convergent actor-critic method under off-policy and function approximation
- we can warm-start with reasonable behavior
- next: apply GAC in mojuco and atari game environment that use DL to represent features