Gradient Actor-Critic Algorithm under Off-policy
Sampling and Function Approximation
Youngsuk Park

PhD Candidate, Stanford University

Dec 3, 2018



v

v

v

v

Outline

RL introduction

RL background
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Introduction: Reinforcement Learning Framework

Consider the following interface

State

Environment

> agent's goal is to select actions to maximize long-term rewards

— long-term rewards is called value V/
— learn policy m(state)=action, rule of how to act on state

» how can agent achieve the goal efficiently?
— cannot store/refer to all past history, e.g.) #state = 10'7* in Go
— use RL that has the collection of algorithms to find optimal policy
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Background: Value-based Method

Q-learning is one of value-base methods
» predictor learns Q(s,a) value, future rewards at state s for action a

Q(s,a) < Q(s,a) + alr + max Q(s',a) — Q(s,a)]

...... r=1/0
(win/lose)

— control is determined by Q-value in prediction
— pros: online learning, etc
— cons: does not scale for continuous (high-dim discrete) actions space

RL Background



Background: Policy Gradient Method

REINFORCE is one of policy gradient methods
» policy 7 is parameterized with 0, e.g.) 7(a | 5;0) = N (0T ¢(s),1)
» learns policy parameter 6

oo

0« 0+ B> ri—b)Vinr

i=t

where b is some baseline
— no prediction/estimation of any value w.r.t 7
— cons: have to wait long time (off-line), etc

RL Background



Background: Actor-Critic Methods

actor-critic methods is hybrid of value-based and policy gradient methods
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» critic (in prediction) learns to estimate V™, giving feedback to actor
» actor (in control) improves policy 7 and generates actions
> overcomes weakness of previous two methods

— scalable for continuous action space (vs. value-based)

— online learning (vs. policy gradient)

» has two separate components
RL Background
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Background: Control with Exploration/Exploitation

> in control, exploration/exploitation can be important

— just exploit via best policy learned so far (from history)
— or maybe consider to explore more (for the better future)
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> Q) while exploring environment, can we still learn optimal policy?
— yes, we can via off-policy learning!
— behavior policy 7, just generates actions, target policy 7 is learned

RL Background



Gradient Actor-Critic for Off-Policy

» LOff-PAC
/ Agent N\

(1) ( Prediction \
Critic  V*(s)

N ——

‘f:“‘ - D error &,
( Control \
L Actor (target) 77,
Apyy
Behavior 7T, =

(critic) w <+ w + apdg(s)
(actor) 6 < 0 + BpdVinm

— state feature ¢(s), TD error § = 7(s,a) + yw” ¢(s') — wT ¢(s)
mt(als)
mp(als)

1Degris, T., White, M. and Sutton, R. S. (2012). Off-Policy Actor-Critic.
Gradient Actor-Critic

— ratio p =




Gradient Actor-Critic for Off-Policy

> (new) gradient actor-critic (with parameter \)
/ Agent N\

[CP) e Prediction \
Critic VA(s)

N ——

= B TD error §,,

( Control \

Actor (target) T;

t+1

Behavior 7T},

)

(critic) w + w + apde?
(actor) 0 < 0 + Bpdy™

— ratio p = ;;gj\jg

— ¢ is the combination of (¢(s¢),. .., d(s0))
— 1™ is the combination of Vinm(a¢ | 8¢), ..., VInr(ao | s0)
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Properties of Gradient Actor-Critic

» GAC allows bootstrap parameter A € [0, 1]

(critic) w + w + apde?
(actor) 6 « 6 + Bpéyp™

where \ decides how much remember/forget past features
» prove GAC converges to optimal for A =1
» show that Off-PAC can have bias (see in examples later)

> in practice, choose A = 1 — € for less variance but (potential) bias
and

> prove its bias is within O (ﬁe)

Gradient Actor-Critic
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Examples 1: Short Corridor

state=0

S.=|—|a

> 4 corridors where 2nd corridor is abnormal
» agent can only distinguish goal or non-goal corridor
» optimal policy is stochastic with Pr(action=right)= 0.6
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s A=095| §*
go2 CH
kA ~=- optimal s === optimal
a T T T T T T T A
a 0 500 1000 1500 2000 2500 3000 3500 4000 a 0 500 1000 1500 2000 2500 3000 3500 4000
Episode number Episode number
alpha=0.0005. beta=5e-05 gamma=0.95. Averaged over 1 trials alpha=0.0005. beta=5e-05 gamma=0.95. Averaged over 1 trials

» behavior policy is uniform-random, still learn optimal with A\ ~ 1
> large biased solution for A < 0.8
» note Q-learning cannot learn optimal
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Examples 2: 6 to 20 Counter example

a=1, r=1

a=0, r=0 @ @a1r1

aOr_

> two state s = 1,2
» optimal policy is taking action 1 for every state

> use the feature ¢(s =1) =1, ¢(s

=1)

Pr(action:

1

{
g

Pr(action:

/"f A=0.95
—— statel

[ 3 0 755 100 15 150 175 200

— state 1

—— state2

0 3 0 75 100 125 150 175 200
Episode number

alpha=0.002. beta=0.0002 gamma=0.95. Averaged over 1 trials

» with A = 1, GAC learn optimal
> Off-PAC (A = 0) fails

Examples

1)

Pr(action:

2) =2, thus Vy(s) = s

s

A=03

— state 1
— state 2
=== optimal

s

0 25 s 75 100 125 150 175 200
Episode number

alpha=0.002. beta=0.0002 gamma=0.95. Averaged over 1 trials
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Examples 3: Mountain Car

-
— 000100002

T8 %
— 000100002

continuous state space (position, velocity) in R?
discrete action space [left, stay, right]

car moves according to dynamical sytem

vV v v v

reward is —1 if it has not reached the goal yet

v

behavior policy is uniform random (timesteps to reach > 5000)

> every 100 episodes, evaluate the performance of target policy

Examples
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Examples 4: Pendulum

0011605

Reward sums (target
g

continuous state (angle, angular velocity), represented by tilecoding
continuous action (torque), modeled by Gaussian

reward is based on position and velocity

goal is to make pendulum stand

Examples
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Examples 5: Mojuco and Atri Game (Next)

Figure: humanoid in Mojuco and atari game in Gym

> input is just pixel information

» need to use DL to represent state from input

Examples 15



Summary & Future Work

» RL agent has two components: prediction and control
> actor-critic is scalable on action and state space (under function

approx.)
» off-policy (with target and behavior) can allow distributed learning

» GAC is (first) convergent actor-critic method under off-policy and
function approximation

» we can warm-start with reasonable behavior

> next: apply GAC in mojuco and atari game environment that use DL
to represent features
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