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Abstract— We propose a control method to optimally use fuel
and battery resources for power-split plug-in hybrid vehicles
(PHEVs) under the case of pre determined driving route
and associated energy demand profile. We integrate a battery
thermal and degradation model and formulate a mixed-integer
convex problem which can be approximately solved with stan-
dard efficient solvers. In simulation, we demonstrate that our
controller can manage battery operation to avoid severe battery
degradation, and balance fuel usage with battery degradation
depending on ambient temperature or energy demand profiles
of the routes. Under various scenarios, the results are validated
by the Autonomie software [1] and compared with conventional
existing CDCS controller and the earlier related work [2], which
only optimized to achieve minimal fuel use and neglects the
battery degradation. Lastly, we show our controller is efficient
enough to be computed on the on-board vehicle computer and
applied in real-time.

I. INTRODUCTION

A. Motivation

Development of Electric vehicles (EVs), hybrid and plug-
in hybrid vehicles (PHEVs) is an active research area for
next-generation vehicles. The market share of hybrid and
PHEVs is estimated to reach 30% by 2050 and growing
demands of both EVs and PHEVs are expected [3]. PHEVs
in particular have an interesting control problem since they
all possess a special combined energy system of electricity
and gasoline along with internal controllers capable of shift-
ing energy resources. Studies ([4], [5], [6]) have shown that
the choice of internal energy resource during the route can
have substantial impacts on the overall vehicle efficiency and
thereby highlight the importance of PHEV control strategies.

Several control strategies for PHEVs have been proposed,
analysed and validated through numerical experiments. A
simple, yet the most common strategy is the Charge-
Depletion Charge Sustaining (CDCS) controller which starts
a trip with a near fully-charged battery and runs on the
electric motor until the battery is discharged to a certain
threshold (i.e., Charge-depleting mode). After this point
on a trip, it operates both electric motor and fuel engine,
charges the battery and maintains a nominal charge level
(i.e., Charge-sustaining mode). Another well-known control
strategy is blend mode which is a table-based (or empirically)
method that uses both motor and the engine based on the
assumption that the total trip length (i.e., driving range)
is known [7]. While existing controllers are simple and
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effective in special cases, they are naive in a sense that they
do not extensively consider the battery degradation effect and
the efficient balancing of both the ICE and the battery during
trips. Because the economic cost of the battery resource is
significant, operational strategies that extend the service life
of the battery are of great practical value.

Battery degradation models ([8], [9], [10]) have been
proposed along with empirical validation. However, most
models are presented in non-formulated forms and are not
practically applicable for an on-board vehicle implementa-
tion due to model complexity. For example, Wang et al. [11]
propose a model which does not depend on the input current
when the current is less than half of the absolute value of
current rate (i.e., C/2) while Zabala et al. [9] propose a model
which defines the input current as a main dependent variable.

This paper is focused on finding a control strategy which
simultaneously optimizes the battery and fuel usage on
power-split PHEVs based on the prior knowledge of a
route energy demand profile. We assume that this prior
route information (including energy demand profile) is fully
determined and consider a simple yet practical battery degra-
dation model. The prior route information could be from
well-trained statistical estimation models of prior routes or
accurate GPS data measurements, which is out of our focus
of this paper, though interesting as a separate research topic.
The techniques from this paper are generally applicable along
with many efficient route prediction methods. We use (mixed
integer) convex optimization to obtain the efficient optimal
control strategy.

B. Contributions

• We consider a control problem that minimize the fuel
efficiency and battery degradation of PHEVs with vehi-
cle dynamic constraints, the battery thermal model and
a degradation model.

• We propose a tractable formulation via convex relax-
ation on non-convex terms, which leads to scalable
algorithms.

• Numerical experiments demonstrate that our method can
manage the battery for less degradation whereas other
controllers (e.g., CDCS and the controller on our earlier
work [2]) cannot.

C. Outline

The paper is organized as follows: in Section II, general
backgrounds for the battery model and our PHEV model are
introduced; in Section III, we formulate an optimal control
problem under pre-determined route profile and transform



this into an approximated convex optimization problem; in
Section IV, we compare our optimal controller to other
existing controllers via numerical experiments, showing the
effectiveness of our method. Lastly, in Section V conclusions
and future research directions are discussed.

II. BACKGROUND

We explain our hybrid vehicle model and battery models.
We consider the time horizon t ∈ [0,T ] where T denotes the
arrival time (i.e., end of a trip). As mentioned, the required
vehicle speed and the desired drive power Pdes(t) ∈ R over
the route are assumed to be known based on precise route
estimation models or can be obtained from past history.

A. Drivetrain

We consider a Power-Split PHEV which can be found
in cars such as Toyota Prius. This kind of drivetrain uses
two on-board energy sources, fuel Pfuel(t) ∈ R and battery
Pb(t) ∈ R. The drivetrain combines these available powers
to output desired power Pdes(t) ∈ R. We regard Pb(t)> 0 as
power extracted from the battery and Pb(t)< 0 as power re-
charged to the battery. For all t ∈ [0,T ], battery energy has
a power limit, i.e.,

Pmin
b ≤ Pb(t)≤ Pmax

b . (1)

And Pfuel(t)≥ 0 since fuel energy does not directly return or
be re-charged.

Our controller must operate a drivetrain to produce the
target power Pdes(t) for every time t ∈ [0,T ]. To attain this
target power, every power-split drivetrain uses a converter
that allows dynamic selections between two different modes
θ(t) ∈ {0,1} at time t as follows

Pdes(t) = fθ (Pfuel(t),Pb(t))

=

{
Pb(t) θ(t) = 0
f (Pfuel(t),Pb(t)) θ(t) = 1

. (2)

Here at mode θ(t) = 0, engine is off and thus all power
comes from the battery only. At mode θ(t) = 1, drive power
comes from both engine and battery, as a function of Pfuel
and Pb. We assume the function f : R×R 7→R is increasing
in each argument and concave, even though f often does not
have a closed form. Although these theoretical assumptions
are not always guaranteed in practice, our method can be
used with a good approximated function f̂ that is close to f .
Using these assumptions, we can represent Pfuel as a function
of Pb and Pdes, i.e.,

Pfuel(t) = hθ (Pb(t),Pdes)

=

{
0 θ(t) = 0
h(Pb(t),Pdes) θ(t) = 1

Note that given Pdes, h is decreasing and convex in Pb. To
obtain a control strategy which minimizes Pfuel over time, it is
important to represent h in a tractable form. In most practical
cases, closed form of h is not readily available. Here, we
use a simple gridding method to represent h approximately.
For detailed definitions and explanations, please refer to V

and our previous paper [2] on representing h for Power-Split
PHEVs and the justification of this approach.

B. Battery

There exist many equivalent circuit models describing
battery dynamics and in this work we adopt a very simple
RC equivalent circuit [2]. The battery model is an RC finite
reservoir with a finite total energy capacity Cb ∈R, a nominal
voltage V ∈ R, and internal resistance Rint ∈ R. Note that
these quantities depend on the specific type and technology
of the battery.

a) Battery Power loss: Battery losses are determined
as P2 loss term which penalizes large withdrawals of battery
power in short amounts of time. In our model, if we require
a certain amount power Pe to run the motors, the power Pb
withdrawn from the battery is

Pb =
(

Pe +
1
2 P2

e
Rint
V 2

)
/Peff (3)

where Peff ∈ R is the efficiency of power converters. The
analogous expression is used for expressing losses while
charging the battery.

b) Battery Energy: We assume the initial battery energy
Eb(0) is known and fixed:

Eb(0) = E init
b (4)

with E init
b ∈ R with unit of Joules. The energy drawn from

battery is
Ėb(t) =−Pb(t) (5)

c) Battery Thermal Model: Battery temperature during
operations may greatly affect performances, life, and reliabil-
ity of the battery system [10]. The heat generation in batteries
are from two major sources: 1) electrochemical operation
and 2) Joule heating. Thermal modeling of battery relies
heavily on the fundamental of heat transfer [12]. Deriving
a perfectly precise model for heat transfer is challenging
due to the complexity of battery chemistry and material
compositions [13]. In this work, we adopt a simple heat
transfer model as follows

mCṪb(t) = |Pb(t)|+htrans (Tb(t)−Tamb(t)) (6)

Here, for a battery m ∈R is its total mass, C ∈R is its heat
capacity, htrans ∈ R is its heat transfer coefficient. Tamb ∈ R
is ambient temperature (i.e., 298K) which is assumed to be
fixed over time [0,T ] and Tb ∈R is the battery temperature at
time t. Note that C depends on composition and chemistry of
batteries and htrans may also reflect the efficiency of battery
cooling system in PHEVs. Please refer to appendix V for
detailed specifications. In this work, we set the initial battery
temperature as the ambient temperature at our departure
location. (i.e., Tb(0) = Tamb).

d) Battery Degradation Model: Battery degradation is
caused by the structural and chemical transformations such
as electrolyte oxidation at the cathode and growth of solid
electrolyte interface on the anode [14]. Two kinds of battery
degradation effects have been studied in literature ([15],
[11], [9]): 1) calendar aging (without using battery) and 2)



cyclic aging (using battery). Calendar aging is dependent on
temperature and state-of-charge (SOC) which are coupled
with an Arrhenius relationship which results in an underlying
dependency on time (tz) where z tends to be 1/2. Cycling
aging is dependent on temperature, charge/discharge current
and total charge/discharge delivered which is often referred
as ampere hour throughput Aht =

∫ t
τ=0 |Ib(τ)|dτ .

Here, we regard the cyclic aging effect as a main cause of
battery degradation since we consider relatively short time
horizon T . Let Qd(t) ∈ R be the cumulative degradation or
loss of capacity so far and Q̇d(t) ∈ R be the battery degra-
dation rate at time t. The simple culmulaative degradation
model on PHEV battery has been suggested by Ahmadian et
al. [13] and we derive the degradation rate version as follows

Q̇d(t) = c1 exp
(

c2+c3|Ib(t)|
RgasTb

)
·g(Aht , Ib(t)) (7)

where c1, c2, c3 ∈ R+ are fitted constants varied by the
types of battery and Rgas = 8.314 [J ·mol · K−1] is gas
constant. Ib(t) ∈ R is charging (positive) or discharging
(negative) battery current and Pb(t) = sign(Ib(t))I2

b (t)Rint is
defined accordingly. Lastly, the degradation rate of Ah effect
is g(Aht , Ib(t)) = Ahz−1

t |I(t)| where z depends on battery
technology and type, and we consider z = 0.5.

This model expresses a degradation effect with respect to
charging rates and battery temperature. More specifically, the
model is able to capture the following degradation properties:
1) the rate of degradation is faster under high |Ib(t)| (or C-
rate), 2) the model follows Arrhenius rule of the chemical
activity on temperature, i.e., chemical reaction is faster under
high temperature Tb(t) and high current Ib(t), 3) the speed
of degradation depends on cumulative charge of battery
delivered over time.

e) Internal Resistance of Battery: Gong et al. [10]
showed the dependency of battery internal resistance on
battery SOC and different temperatures. Particularly, under
the fixed temperatrue, the internal resistance Rint is almost
constant within 20% to 80% battery SOC range (Refer
to Figure 3.11 [10]). The value depends on battery tem-
perature with Arrenhius model but the value stays within
approximately 1 m Ω to 3 mΩ within a moderate range of
temperature.

III. OPTIMAL CONTROL

Our goal is to efficiently operate a drivetrain to meet the
target power requirement Pdes(t) for time t over the finite
time horizon [0,T ]. Here, we design a tractable form of the
objective function for total costs and constraints for engine
and battery models, via convex relaxations.

A. Constraints

a) Battery Temperature: EVs and PHEVs must main-
tain the operating range of battery temperatures through con-
trol by cooling systems as temperatures outside the desired
range may severely affect the battery performances [16].
We have modeled a finite capacity cooling system which
regulates the battery temperature within a specific range of

temperatures. By controlling the power dissipation in the
battery, we keep the battery temperature within

T min ≤ Tb(t)≤ T max (8)

over time t ∈ [0,T ]. We set the minimum temperature to be
ambient (i.e., T min = Tamb) and allow maximum temperature
to be 45◦C above the ambient temperature of 25◦C (i.e., 343
K).

b) Finite Battery Resource: The battery energy has
limits

Emin ≤ E(t)≤ Emax (9)

for all t ∈ [0,T ]. In other words, the controller only allows
the operation within a fixed range of the battery SOC. This
constraint is common to prevent a severe battery degradation
and usually Emin is 20% and Emax is 80% of the total battery
energy (i.e., Emin = 0.2C and Emax = 0.8C where C here is
battery capacity).

B. Cost Function

Our total cost function for operating the vehicle is a
combination of four objectives

J = Jfuel +λ1Jcooling +λ2Jdegrad +λ3S (10)

where λ1, λ2, λ3 ≥ 0. We specify each of objectives below.
a) Fuel Cost: Total cost of fuel consumed Jfuel ∈R is

Jfuel = (πη)
∫ T

0 Pfuel(t)dt. (11)

where η ∈R is the heating value of a fuel and π ∈R is a fuel
price. We assume that fuel price is fixed over time t ∈ [0,T ].

b) Switch Cost: We would like to minimize the number
of times the fuel engine is turned on or off in operation,
and once started, we should run the engine at an efficient
operating temperature. Therefore, we introduce a switching
cost S =

∫ T
t=0 1(θ̇(t) = 0)dt which is the number of times a

mode θ(t) switches between 0,1.
c) Cooling Cost: In our vehicle model, we choose a

simple battery cooling system and define the cost of power
usage by battery cooling system as

Jcooling =
∫ T

0 htrans (Tb(t)−Tamb)dt (12)

where htrans ∈ R is battery heat transfer coefficient defined
in 6 and specified in II. This represents a passive cooling
system which aims to set battery temperature to ambient
temperature via a capacity limited heat transfer.

d) Degradation Cost: The cost of battery degradation
is

Jdegrad =
∫ T

0 φ
(
Q̇d(t)

)
dt. (13)

where φ : R 7→ R is a non-negative and increasing cost
function associated with the battery degradation rate. φ can
be nonlinear and may not have a closed form expression, so
we will use a tractable surrogate function in later section.



Notation Definition
Jfuel Total fuel usage cost

Jcooling Total cooling power cost
Jdegrad Total battery degradation cost

S Total switch cost
Pfuel Fuel power
Pb Battery power

Pdes Power demand
Tb Battery temperature

TABLE I: Notations and parameters for optimization problem

C. Non-convex Problem

Therefore, the optimization problem is

minimize J := Jfuel +λ1Jcooling +λ2Jdegrad +λ3S
subject to Pfuel(t) = hθ (Pb(t),Pdes(t))

Ė(t) =−Pb(t)
Pmin

b ≤ Pb(t)≤ Pmax
b

Emin ≤ E(t)≤ Emax

E(0) = E init

Tb(0) = Tamb
T min � Tb(t)� T max

mCṪb(t) = |Pb(t)|−htrans (Tb(t)−Tamb) ,
(14)

with variables θ(t)∈{0,1}, Pb(t)∈R, Tb(t)∈R+ and E(t)∈
R+ over t ∈ [0,T ]. In this problem, m, C, htrans are defined by
vehicle specifications and Tamb, Pmin

b , Pmax
b , Emin, Emax, T min

and T max are model parameters we select (see Appendix V-
B). Note that this is a mixed integer non-convex optimization
problem for which no general algorithms is known to be
efficient to solve.

D. Tractable Mixed-Integer Convex Problem via Relaxation

To solve (14) approximately, we convert it into the fol-
lowing mixed-integer convex problem.

minimize J := Jfuel +λ1Jcooling +λ2J{α}degrad +λ3S
subject to Pfuel(t) = hθ (Pb(t),Pdes(t))

Ė(t) =−Pb(t)
Pmin

b ≤ Pb(t)≤ Pmax
b

Emin ≤ E(t)≤ Emax

E(0) = E init

Tb(0) = Tamb
T min � Tb(t)� T max

mCṪb(t)≥ |Pb(t)|−htrans (Tb(t)−Tamb),
(15)

with variables θ(t), Pb(t), Tb(t) and E(t) over t ∈ [0,T ]. Now
we explain how to relax non-convex terms in (14) to (bold)
convex ones above.

a) Relaxation on thermal model: Re-arranging the
equation (6), we have

Ṫb(t) = (|Pb(t)|−htrans (Tb(t)−Tamb))/mC.

Note that this is a non-affine equality constraint because the
right hand side is a convex function for all Tb ∈R and Pb ∈R.
In order to preserve the convexity of the problem, we replace
the constraint with

Ṫb(t)≥ (|Pb(t)|−htrans (Tb(t)−Tamb))/mC. (16)

Here, we relaxed this equality constraint into an inequality
constraint. This relaxation is not tight in general, but is tight
if the solution of original problem (14) satisfies Tb(t)≥ Tamb
over all time t ∈ [0,T ] and λ2 = 0. To see this, note that
Jcooling encourages temperature Tb(t) as small as possible
(provided Tb(t)≥ Tamb). In other words, among any feasible
points satisfying inequality, the solution taken will be the
smallest one Tb(t) and Ṫb(t) accordingly (for given previous
temperature Tb(t−∆t)), making this inequality tight.

b) Approximation of degradation cost: For our degra-
dation model, we assume the internal resistance to be con-
stant Rint = 2.5 mΩ within 20% to 80% SOC range and under
moderate range of temperature (See Section II B-e). With
simple assumption, we derive tractable convex surrogate cost
function J{α}degrad using Least Square with fitting parameters
α ∈ R3 where α = (α1,α2,α3) as

J{α}degrad =
∫ T

t=0

(
α1|Pb(t)|+α2Tb(t)+α3

∫ t

τ=0
|Pb(τ)|dτ

)
dt

(17)
where α1 ≥ 0 and α2 ≤ 0. The sign of α3 depends on type
of battery, and here α3 ≤ 0 for the choice of z = 0.5. See the
details on how to fit over data in Appendix V-D. Using these
approximations, the problem transforms to a mixed-integer
convex optimization which can find the global solution using
standard methods such as branch-and-bound and interior
point method [17].

IV. RESULTS AND ANALYSIS

A. Experiment Setting

a) Computation: We show that our formulation (15)
can be efficiently solved in Julia (with package Convex.jl
[18]) within a minute (on 2.6 GHz Intel Core i7 processor),
which is fast enough to be computed in real time. We
discretize all continuous time terms with ∆t interval in order
to compute integrals and solution approximately.

b) Simulator: The model in Section 3 is a simplified
model which can be run in real time.1 The optimal controller
takes the simulated data and produces the optimal strategy
based on our simplified model. To test the results from the
optimal controller, we use Autonomie, a vehicle simulator
developed by Argonne National Laboratory which has been
studied and verified against various kinds of vehicles [1].
Since our work focuses on a PHEV model with two modes,
we consider a vehicle which has specifications close to that of
Toyota Prius. For detailed parameters of our vehicle and the
cooling system, refer to our previous work [2] and Table II.

c) Routes with Power Demand: We use six synthetic
routes to test the efficiency of controllers where each route
contains two different regions: one represents a highway
region with constant speed cruise and the other represents
an urban region with numerous start-stop cycles and speed
variations including zero speed intervals. These routes have
three different cruise speeds: 1) medium speed (39 mph), 2)

1The code and simulator is available at
https://github.com/jkim22/battDegradOpt code.git
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Fig. 1: Two power domain profile (Pdes) examples, consisting
of an urban region and a suburban cruise region but with
order interchanged. Cruise region requires constant medium
speed of 39 mph (17.5 m/s).

medfast speed (65 mph) and 3) fast speed (85 mph). Figure 1
represents two different routes with medium speed cruise
component but with the the suburban and urban regions
inverted in order.

In our earlier related work [2], we observe that even
though the total power demand is the same for the mixed
urban-suburban routes with order interchanged, the amount
of fuel consumption varies depending on the control strategy
employed by PHEVs. Here, we extend this observation to
include battery degradation and see how battery thermal
model and degradation model affects strategies of the optimal
controller over various routes.

d) Weight Parameters: The objective of our optimiza-
tion problem (15) is formed by the weighted sum of four
objectives. Weights λ1, λ2 and λ3 quantifies the importance
of Jcooling, Jdegrad and S respectively. Since our focus is
on degradation model rather than power usage of cooling
system, we set λ1 = 1 for all cases. Also, we set λ3 = 20,000
to encourage a realistic total number for the engine on/off
switching. While fixing other weight parameters, we tune
the parameter λ2 to test our controller with appropriate
battery degradation considerations. The value of Jdegrad is
not comparable to other objectives so it is important to
adjust λ2 to achieve efficient control strategy. For more
sophisticated approach, we can incorporate λ2 which reflects
real economic cost ratio between fuel price and battery price,
but here we use a simpler approach and defer this analysis
to the longer version of our paper. For an effective hyper-
parameter search, we normalize degradation parameters {α}
(multiplying ∑

3
i=1 αi to λ2). Also, we test the effect of λ2 by

solving the problem (15) under different choices of λ2.
e) Different Ambient Temperatures: The battery degra-

dation model (17) depends on battery temperature Tb and it is
mainly controlled by the cooling system (12) which aims to
keep the Tb based on ambient temperature setting. Therefore,
we test the effect of various ambient temperature settings
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Fig. 2: Comparison of SOC and total fuel use of our
controller (red) and baselines (blue, orange) after one cycle.
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Fig. 3: Comparison of battery capacities remained over our
controller (red) and baselines (blue, orange) after one cycle.

under fixed weight parameters of our optimal controller. The
temperature is ranging from 298K to 320K which represents
the room temperature to relatively hot temperature.

f) Baselines: We compare our optimal controller with
two baselines: CDCS controller and the controller on our
earlier related work [2]. CDCS uses a simple strategy which
preferentially uses battery first and then uses the fuel re-
sources and engine for operation. The other controller aims
to minimize the total fuel usage and the number of drivetrain
switching modes. We simulate the synthetic routes under
these three controllers and compare the performances.

B. Analysis

a) Balancing Resources and Battery Degradation over
Different Routes: We tested our optimal controller on six
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Fig. 4: Comparison of battery degradation, i.e., Qd , over six
different routes after one drive cycle.

different synthetic routes with known power demand profiles
and compared with two baselines. Figure 2 shows the battery
SOC and combustion fuel use over time for a route with an
urban region first and then suburban region with a medium
speed cruise. Although all controllers start and end with same
battery SOC, fuel consumption varies over the same route.
The main difference is in the cruise component (approxi-
mately from time 3200 seconds) where our controller shows
steady but smaller usage of battery energy compared to other
controllers. As expected, optimal control without degrada-
tion shows significantly less fuel consumption compared
with other controllers while it results in the most battery
degradation as Figure 3 suggests. This result shows that the
high currents used by the earlier controller, while achieving
minimums of fuel use, can affect the battery longevity.

Overall our optimal controller showed less degradation
compared to other controllers over the routes we tested
(Figure 4). The result is based on driving each route at
exactly once and on average, our controller obtains 12% less
battery degradation than that of CDCS. Also, our controller
is able to maintain 17.5% more battery capacity than that
of the other baseline controller. Based on these results, we
can estimate how much the battery capacity (or life) would
degrade after three years, assuming this trip is daily. Our
controller is estimated to suffer battery capacity degradation
about 16% at most while other two baselines suffer 20% or
more battery capacity loss (See Figure 8 and 9 in Appendix
for the detailed comparisons). These results emphasize that
the control method is capable of balancing the efficiency
between fuel and battery resources. For practical economic
reasons, extending the battery lifetime is of significant value
to the vehicle owner and manufacturer.

b) The Effect of Degradation Weight Parameters:
Figure 5a shows the result on a route consisting of an urban
region followed by the suburban region with medium speed
cruise. It shows that increasing λ2 weight encourages the
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Fig. 5: Result on using different λ2 and Tamb.

controller to use more fuel while discouraging battery usage.
c) The Operation on Various Ambient Temperatures:

Under fixed λ1, λ2 and λ3, we tested various ambient tem-
peratures, ranging from 298K (i.e., ambient temperature) to
320K (i.e., hot weather). Overall, higher ambient temperature
resulted in more total fuel usage and less battery power (See
Figure 5b).

V. CONCLUSION

We have proposed an efficient control method which
balances the fuel and battery resources while taking bat-
tery degradation into consideration over the predetermined
route. To do so, we integrated a battery thermal model and
battery degradation model into our problem. This extends
the capability of the battery degradation control, beyond that
of CDCS or other controllers designed to minimize fuel
resources only. We posed a mixed-integer convex optimiza-
tion problem and showed that our controller is capable of
generating a tractable control strategy which is fast (efficient)
enough to be computed on the on-board vehicle computer.

This technique is readily applicable in current vehicles as
well as any hybrid vehicle in the future that manages fuel
and battery resources during operation. Expanding the work
to incorporate route estimation methods to the unknown route



setting is an interesting future direction. Another future ex-
tension for more practical purpose is developing the control
method of power splitting over multiple resources, beyond
one fuel engine and one battery, to allow energy management
with supercapacitors over diverse real-world routes.
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Fig. 6: Function Pfuel = h(Pb) for a power split hybrid for a
given Pdes and wheel speed w

APPENDIX

A. Gridding Technique

In this section, we show our method on representing
the h : R 7→ R in a tractable form. Firstly, based on given
vehicle configurations, we calculate upper/lower bounds of
the control inputs (e.g., engine speed Ω, engine torques, τ).
Next, for fixed Pdes, wheel speed w and engine on/off θ , we
consider all of these configurations to obtain corresponding
Pb and Pfuel. The interpretation is that we consider all con-
vex combinations of internal configurations for a particular
known Pdes, w and θ . Then, we find the best convex function
h that best fits on all points (Pfuel,Pb) (See Figure 6). For
example, when θ = 0 in our power-split PHEV model case,
engine is off so all the power comes from the battery
(i.e.Pdes = Pb). For θ = 1 case, engine is on so we consider
all points (Pfuel,Pb) and find the best (approximated) function
h.

B. Parameters

Our battery heat transfer model used following parameters
as shown in table II. We set Tamb = 298K, T min = 290K,
T max = 343K, Emin = 1 × 107 Joules, Emax = 2.5 × 108

Joules. Note that the current Plug-in Hybrid Prius configura-
tion has battery mass of 80 kg (180 lb) and battery capacity
of 8.8 kWh. Our model is roughly similar to Prius, the
existing commercial PHEV.

Parameters Model Unit
Battery Mass (m) 70.62 kg
Heat Capacity (C) 795 J/kg ·K

htrans 137.5 W ·m−2 ·K
Pmax

b 30000 W
Pmin

b −20000 W
Battery Capacity 7.8 k ·Wh

TABLE II: Parameters for Battery Thermal Model

C. Additional Results

a) Different routes: In some cases, our optimal con-
troller generated a strategy with more fuel consumption than
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Fig. 7: Result on Urban Last Route

other controllers. For example, in Figure 7a and 7b, our
controller used significantly more fuel resources than those of
two baselines. In this case, our controller decides to consume
more fuel than battery resource to alleviate future battery
degradation effects.

b) Long term battery degradation effects: Figure 8
and 9 shows degradation of battery capacity after one year
and three years respectively. In all cases, our controller suf-
fers less battery degradation then that of other two baselines.

D. Least Square to Fit Degradation Cost

Note that
√
|Pb(t)|∝ |I(t)| because the internal resistance,

Rint can be approximated by a constant (≈ 2.5 mΩ). There-
fore, we use Pb(t) as a variable in Qd . We assume φ(x) =
log(x+1) which is nonnegative for x≥ 0 and increasing.
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Fig. 8: Comparison of estimated battery degradation, i.e., Qd ,
over six different routes for one year (250 route trips)
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Fig. 9: Comparison of estimated battery degradation, i.e., Qd ,
over six different routes for three years (750 route trips)

log
(
Q̇d(t)+1

)
= log(c1)+

c2 + c3|Ib(t)|
RgasTb(t)

−1
2

logAht +
1
2

log |Ib(t)|,

implying log
(
Q̇d(t)+1

)
is proportional to |Pb(t)| and in-

versely proportional to Tb(t) and
∫ t

τ=0 |Pb(τ)|dτ .
Then we approximate this cost function. To achieve a

tractable convex battery degradation model, we adopt a data
efficient method which is to calculate Qd based on our
available route data D ∈ D and fit the model best using a
least square method. In other words, we solve

min ∑
D∈D

∫ T

t=0

(
‖ log(QD

d (t)+1)

−α1PD
b (t)−α2T D

b (t)−α3

∫ t

t ′=0
PD

b (t ′)dt ′‖2
2

)
dt

with variables α1, α2 and α3 ∈R. Then, we obtain a tractable
degradation cost function as

J{α}degrad =
∫ T

t=0

(
α1Pb(t)+α2Tb(t)+α3

∫ t

t ′=0
Pb(t ′)dt ′

)
dt.
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