
Successive Lossy Compression for Laplacian Sources

Youngsuk Park and Hyeji Kim

June 11, 2014

Abstract

In this project report, we present three practical schemes of lossy compression for
Laplacian source and L-1 distortion: The first scheme generalizes the successive re-
finement scheme. The second scheme modifies the first scheme by using only ternary
alphabet. The third scheme encodes only the indices of maximum and minimum com-
ponent. The whole of suggested schemes have a rateless property as well as are practical
in terms of low complexity and applicability in real image data. Moreover, these also
work for a Gaussian source.

1 Introduction

The lossy compression of continuous alphabet has been a practically valuable research
field given the fact that most of multimedia sources are analog. Especially, a practical
compression scheme for Laplacian source is significant because Laplacian distribution is
widely adapted as the model for the DFT coe�cients of correlation of image pixels or
amplitude of voice.

With respect to discrete alphabet source, not only it is well developed in a sense that
theoretical rate distortion theorem [1] was solved, but several practical schemes of Trellis
bases quantizer [2], LDPC ensemble [3] and polar code [4] [5] have been developed. But,
the lossy compression for continuous alphabets is relatively less exploited. Previously, the
scheme using extremes and the Sparse linear regression scheme [6] were suggested for a
Gaussian source. For a Laplacian source, MCMC based compressor [7] in high distortion
and expansion coding compressor [8] in low distortion were suggested.

In this paper, we present some schemes satisfying the following viewpoints

• L-1 distortion criterion,

• high distortion regime working also in low distortion range,

• rateless and sequential property,

• low complexity and storage.

The rest of paper is organized as follows. In Section 2, the problem setup of lossy
compression for Laplacian source is described. In Section 3, the successive refinement scheme
is reviewed [9]. In Section 4, we introduce a generalized suceessive refinement scheme with
continuous alphabets, along with a similar scheme except only for using discrete alphabet

1

in Section 5. In Section 6, we use the scheme only encoding the indices of the maximum
and minimum component. In Section 7 and 8, three schemes in 4, 5, 6 are applied to
compress real image data and a Gaussian source.

2 Problem Setup

Our problem setup follows the setting of lossy compression, where the source and the
distortion measure are as follows.

Laplaician distribution Source sequence x = {x
1

, · · · , x
n

} where x
i

is i.i.d. Lap(�) given
by

f

Xi(xi) =
1

2�
e

�|xi|/�

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x

pd
f

pdf of Lap(λ)

λ = 1
λ = 0.5

Figure 1: PDF of Laplacian(�)

L-1 distortion The distortion measure is L-1 norm given by

d(x, x̂) =
1

n

nX

i=1

kx
i

� x̂

i

k
1

2.1 Rate distortion function

The fundamental limit of lossy compression [1] of i.i.d Laplacian source for L-1 distortion
is well characterized by rate distortion function given by

R(D) = min
p(x̂|x) : E[d(x,x̂)]D

I(X; X̂)

=

(
log(�/D) for D �

0 otherwise.

2

This rate distortion function is achieved with X̂ distributed according to

f

ˆ

X

(x̂) =
D

2

�

2

�(x̂) + (1� D

2

�

2

)
1

2�
e

�|x̂|/�

as shown in Figure 2 and joint distribution with X is as shown in Figure 3.
We let LapMixer(�, D) denote this distribution.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D2/λ2

(1− D2

λ2)Laplacian(λ)
f
X̂
(x̂)

X̂

Figure 2: Marginal distribution of X̂ ⇠ LapMixer(�, D)

X̂ ∼ LapMixer(λ, D)

Z ∼ Laplacian(D)

X ∼ Laplacian(λ)

Figure 3: Joint distribution of X̂ and X

3 Background: Successive Refinement

Theorem 1 The successive refinement rate-distortion region R(D
0

, D

1

) is the set of rate
pair (R

1

, R

2

) such that, for a distortion pair (D
0

, D

1

) with D

0

 D

1

R

1

� R(D
1

)

R

1

+R

2

� R(D
0

)

where R(D) = min
p(x̂|x):E(d(X,

ˆ

X))D

I(X; X̂) is the rate-distortion function for a single
descritpion.

Definition 1 If (R
1

, R

2

) = (R(D
1

), R(D
0

)�R(D
1

)) is actually achievable for all D
0

 D

1

and there is no loss of optimality in describing the source successively by a coarse description
and a refinement of it. Such a source is referred to as a successively refinable source.

3

Note that Laplacian source is a successively refinable source and thus all of points in
R(D) curve are achievable for su�ciently large n. However, one of the main problem of
this successive refinement scheme is the codebook size which is exponential on the source
size n. For example, in order to achieve target a (R,D) through K successive refinement
steps with a rate increment �R = R/K, the codebook size Ke

nR/K is required. Another
problem would be the computational complexity of joint typicality encoding.

4 Generalized Successive Refinement Scheme with Continu-

ous Alphabets

Generalized successive refinement scheme follows the basic idea of successive refinement
scheme 3 in a sense that both of them exploit several iterative stages to achieve target
distortion D sequentially. Here, we generalize it by setting the iteration number K

n

=
n/ log n varying with n so that the codebook size is polynomial on n, i.e., K

n

e

nR/Kn = n

2

R

logn

.
On the top of that, L-1 norm minimizing criterion is used for encoding instead of joint
typicality criterion in the encoder.

4.1 Scheme

Notation For an i.i.d Lap(�) source x, fix the number of iteration K and the subcodebook
size M . For each iteration stage k 2 [1 : K], define �R = logM

n

, R
k

= k ⇥ logM

n

, and
D

k

= �e

�Rk .

Codebook generation: For each stage k 2 [1 : K], fix p(x̂) = LapMixer(D
k�1

, D

k

)
Randomly and independently generate M sequences x̂(m), m 2 [1 : M], each accord-
ing to p(x̂) =

Q
n

i=1

p

ˆ

X

(x
i

). The generated sequences, so called sub-codeword x̂(m),

constitute the subcodebook C(k) = {x̂(k)(1), · · · , x̂(k)(M)} with probability

p(C(k)) =
MY

m=1

nY

i=1

p

ˆ

X

(x̂
i

(m)) (1)

These randomly generatedK subcodebooks consists of the codebook C = {C(1)

, . . . , C(K)}
and are revealed to both encoder and decoder.

Encoding At a stage k, choose an index m

(k) = argmin
m2[1:M]

kx(k) � x̂(k)(m)k
1

. And

send such m

(k). For the next stage k+ 1, set x(k+1) = x(k) � x(k)(m(k)) and repeat it
up to the last K iteration.

Decoding At a stage k receiving m

(k), the decoder chooses the reproduction sequence
x̂(k)(m(k)) and then recover a sequence x̂(1:k�1)+x̂(k)(m(k)) sequentially where x̂(1:k�1) =P

k�1

j=1

x̂(j)(m(j)) is the recovered sequence up to the previous k�1 stage. Consequently,

at the last stage K, the decoder reproduces the sequence
P

K

k=1

x̂(k)(m(k))

Analysis The total rate for K iterative stage is R = R

K

= K

logM

n

. The size of codebook
is K ⇥Mn, the computational complexity is o(K

n

⇥M

n

⇥ n). For instance, if set by

4

L(n) = n

logn

and M = n, then the scheme requires n

3

logn

codebook size and o(n

3

logn

)
computational complexity.

4.2 Performance Analysis

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D

D(R)=exp(−R)
G.S.R.
Expansion
exp(−R/1.4)

Figure 4: Achievable rate distortion pairs using generalized successive refine-
ment. In this numerical result, we set � = 1, n = 103, and M = 103 and averaged over
10 simulation. R(D)(red-solid) is the rate distortion function; G.S.R(black-solid) is achiev-
able rate using our scheme 4.1; Expansion(blue-dashed) is achievable rate using expansion
coding and time-sharing; and e

�R/1.4(green-dashed) is drawn for reference.

As in Figure 4, our scheme performs well in low rate. But it is not better than expansion

coding in high rate. The degree of decaying becomes slower if referred to as the line e

� R
1.4 .

Note that, it converges to about 0.05 distortion point slightly above the 0 distortion point.

4.3 Suggested Improvement Points

4.3.1 fitting to right successive sources

For a successive refinement scheme in section 3 for Laplacian sources, we know that it
can achieve the rate distortion function R(D) of all rates for a su�ciently large n. This is
theoretically guaranteed because, for each stage, it uses huge amount of subcodebook e

n�R

where �R � I(X;X), X ⇠ Lap(D
k�1

), and X̂ ⇠ LapMixer(D
k�1

, D

k

). In addition, it
uses joint typicality encoding in order to find a sequence satisfying Laplacian distribution
with target distortion. But, the encoder in our scheme 4.1 simply chooses a message such
that minimizing L-1 norm distortion on each stage instead of joint typicality encoding.
Consequently, the normalized empirical distribution of a recovered sequence x(1:k) is not
guaranteed as a Laplacian source any more.

In Figure 4, the achievable curve decays like e

�R/1.4 at low rate but stop to follow
it at high rate, which implies that x(1:k) deviates from the expected Lap(D

k�1

) as iter-
ative stages go on. Moreover, we supposed that the normalized empirical distribution of

5

x(1:k) might have a steeper decaying tail with more zeros than Lap(D
k�1

). As in Fig-
ure 5, the normalized histograms at each rates turns out to have a similar distribution of
Lap(1.4⇥D

k�1

) = 1

2⇥1.4⇥Dk�1

e

�R/(1.4⇥Dk�1

) rather than Lap(D
k�1

)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5
Rate= 1.01,Distortion = 0.49

−3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3
Rate= 2.02,Distortion = 0.25

−2 −1 0 1 2 3 4 5
0

2

4

6

8

10

12
Rate= 4.03,Distortion = 0.10

Figure 5: Histograms of recovered sequences x(1:k) at stage k. Each represents the
histogram at stage k = 150(left), k = 300(middle), 600(right) having the point R

k

= 1,
R

k

= 2, and R

k

= 4. Blue line indicates normalized histogram and red line indicates
Lap(1.4⇥D

k�1

)

From this observation, we introduce a fitting parameter c. And changed the target curve
D(R) = �e

�R into D

c(R) = �e

�R/c. In result, we experimentally found that the fitting
parameter c ⇡ 1.4 have the best performance within 1 c 3 range and this value does
not depend on the source parameter � nor source size n.

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D

D(R)=exp(−R)
G.S.R.(c=1.4)
G.S.R.
exp(−R/1.4)

Figure 6: Achievable rate distortion pairs using generalized successive refinement
with fitting. R(D)(red-solid) is the rate distortion function; G.S.R with c = 1.4 (black-
solid) is achievable rate using the scheme with fitting 4.3.1; G.S.R(blue-solid) is achievable
rate using the scheme without fitting 4.1; and e

�R/1.4(green-dashed) is drawn for reference

Analysis In Figure 7, our suggested scheme improves the performance by completely over-
lapping the fitted D

c(R) = �e

�R/c curve in high rate as well, resulting in converge to
D = 0.

6

4.3.2 reducing the storage through permutation

Our scheme generating each subcodebook reduces the storage to be polynomial on n

and the total storage S

orig(K,M, n, |X |) = K ⇥ log(|X |Mn) nats is required. We can fur-
ther reduce the storage by utilizing the fact that the big portion of each subcodebook is
composed of zeros.

Codebook generation Firstly, for the k stage, generate the first sub-codeword x̂(k)(1)
according to LapMixer(D

k�1

, D

k

) as usual. Secondly, the rest of sub-codewords
are generated by permutating x̂(k)(1) randomly. In other words, for a n by n ran-
dom permutation matrix P ⇠ unif [1 :

�
n

n(1�(Dk/Dk�1

)

2

�
⇥ n(1 � (D

k

/D

k�1

)2)!], use

x̂(k)(m) = P ⇥ x̂(k)(1) for m 2 [2 : M].

Analysis The required storage for each permutated sub-codeword x̂(k)(m) for m 2 [2 : n]
is given by

log

✓✓
n

n(1� (D
k

/D

k�1

)2

◆
⇥ n(1� (D

k

/D

k�1

)2)!

◆

= log

✓
n!

n(D
k

/D

k�1

)2!⇥ n(1� (D
k

/D

k�1

)2)!
⇥ n(1� (D

k

/D

k�1

)2)!

◆

= log

✓
n!

n(D
k

/D

k�1

)2!

◆

= log

✓
n!

ne

� 2 logM
n !

◆

Therefore, the required total storage is roughly S

imprv(K,M, n, |X |) = K⇥
✓
log |X |n+

(M�1) log

✓
n!

ne

� 2 logM
n

!

◆◆
. With our setting M = n, the storage improvements can be

indicated as the ratio(n,M, |X |) = S

orig(K,M, n, |X |)/Simprv(k,M, n, |X |) as shown
in 1.

Table 1: Storage saving via permutation codebook

n M |X | ratio(M,n,X)
103 103 30 36.5
103 103 50 41.8
104 104 50 230
105 105 50 1455

Figure 7 shows that performance of permutation code is very close to that of the previous
scheme 4.3.1 in low rate.

7

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D

D(R)=exp(−R)
G.S.R.(c=1.4)
G.S.R.Permutation(c=1.4)

Figure 7: Achievable rate distortion pairs using generalized successive refinement
with fitting and permutation codebook. R(D)(red-solid) is the rate distortion func-
tion; G.S.R with c = 1.4 (black-solid) is achievable rate using our scheme 4.3.1 with fitting;
and G.S.R Permutation with c = 1.4(blue) is achievable rate using our scheme 4.3.2 with
fitting and permutation codebook.

5 Generalized Successive Refinement Scheme with Ternary

Alphabets

Even though the codebook size is significantly reduced through the scheme 4.1, 4.3.1, and
4.3.2 compared with the existing scheme 3, it still requires a huge storage for a continuous
codebook. Thus, we suggest a more practical scheme only using finite alphabets in a
codebook.

Remember that LapMixer(D
k�1

, D

k

) in Figure 3 is used for generating a subcodebook
in the section 4. And for large source size n, the rate increment �R = log(M)/n between

stages would be small enough to be told D

k

/D

k�1

= e

�R = e

� logM
n ⇡ 1. This means that

(D
k

/D

k�1

)2 ⇡ 1 portion of the subcodebook consists of zero and the remaining negligible
1� (D

k

/D

k�1

)2 ⇡ 0 portion of the subcodebook consists of alphabets following Lap(D
k�1

).
In result, we can expect that discretizing Laplacian portion into 1 bit alphabet would have
only a negligible e↵ect on additional distortion.

5.1 Choose a good discrete alphabet

Here, we wanted to select 1 bit symmetric alphabet in addition to ‘0’ alphabet which be-
haves like LapMixer in terms of L-1 norm preservation. Thus, we define a PMFBinaryMixer(�, D)
given by

p

ˆ

X

(x̂) =

(
(D/�)2 if x̂ = 0
1

2

(1�D

2

/�

2) if x̂ = � or ��

Note that, for n i.i.d BinaryMixer(�, D) source x
B

and LapMixer(�, D) source x
L

,
both of L-1 distortion are close, i.e., 1

n

kx
B

k
1

⇡ 1

n

kx
L

k
1

⇡ (1� (D/�)2)�.

8

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D2/λ2

(1− D2

λ2)/2 (1− D2

λ2)/2

λ−λ

f
X̂
(x̂)

X̂

Figure 8: BinaryMixer(�, D)

5.2 Scheme

Notation For an i.i.d Lap(�) source x, fix the number of iteration K and the subcodebook
size M . For each iteration stage k 2 [1 : K], define �R = logM

n

, R
k

= k ⇥ logM

n

, and
D

k

= �e

�Rk .

Codebook generation: For each stage k 2 [1 : K], fix p(x̂) = BinaryMixer(D
k�1

, D

k

)
instead of LapMixer(D

k�1

, D

k

).

The rest of part of Codebook generation, Encoding, Decoding rule are the same as in the
scheme 4.1

5.3 Performance Analysis

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D

D(R)=exp(−R)
G.S.R.
G.S.R. Ternary

Figure 9: Achievable rate distortion pairs using generalized successive refinement
with ternary alphabet. R(D)(red-solid) is the rate distortion function; G.S.R(black-
solid) is achievable rate using the scheme with ternary alphabet in 5.2; and G.S.R(blue-solid)
is achievable rate using the scheme with continuous alphabet in 4.1

9

As in Figure 9, this suggested scheme performs well in the rage of low rate. Also, the
performance of this ternary discretization is close to that of continuous alphabet scheme 4.1
in low rate. But the gap between two schemes becomes bigger as rate increases. In addition,
this scheme saturates at 0.2 unable to converge on D = 0 for a high rate.

Considering the fact that the scheme is reachable on the target distortion D = 0 can be
one of the significant basis of a good lossy compressor, the next approach improving this
saturation issue is necessary.

5.4 Suggested Improvement Points

5.4.1 fitting to right successive sources

We supposed that, like in the scheme 4.3.1, this saturation could have been originated
from the fact that the normalized histograms after k iteration stage would be far way from
the expected Lap(D

k�1

) distribution. Thus, we introduce a fitting parameter c again. And
changed the target curve D(R) = �e

�R into D

c(R) = �e

�R/c.

Analysis In result, we experimentally found that there is trade o↵ between performance
in low rate and performance in high rate depending on c.

• for a large c > 2.5, it works well in high rate and does not saturate.

• for a small c < 2, it works well in low rate but saturates.

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D

D(R)=exp(−R)
G.S.R.(c=1.4)
G.S.R. Ternary(c=1)
G.S.R. Ternary(c=1.4)
G.S.R. Ternary(c=3)

Figure 10: Achievable rate distortion pairs using generalized successive refine-
ment with ternary alphabet and fitting. R(D)(red-solid) is the rate distortion func-
tion; G.S.R with c = 1.4 (black-solid) is achievable rate using the scheme with fitting in 4.3.1;
and G.S.R Ternary’s(blue) are achievable rate using the scheme with ternary alphabet and
fitting in 5.4.1.

10

5.4.2 reducing the storage through permutation

The idea and formula for storage calculation are the same as in 4.3.2. Table 2 shows
roughly 3 times storage saving in case of Ternary alphabet compared with 30 alphabet. See
Figure 11 for the performance.

Table 2: Storage saving via permutation codebook

n M |X | ratio(M,n,X)
103 103 3 12.1
103 103 30 36.5
105 105 3 413
105 105 30 1282

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D

D(R)=exp(−R)
G.S.R.(c=1.4)
G.S.R. Ternary(c=3)
G.S.R. Ternary Permutation(c=3)

Figure 11: Achievable rate distortion pairs using generalized successive refine-
ment with fitting, permutation codebook, and ternary alphabet. R(D)(red-solid)
is the rate distortion function; G.S.R with c = 1.4 (black-solid) is achievable rate using our
scheme 4.3.1 with fitting; G.S.R Ternary with c = 3(blue dashed) is achievable rate using
our scheme 5.4.1; and G.S.R Permutation with c = 3(blue) is achievable rate using our
scheme 5.4.2 with fitting and permutation codebook.

6 Sending the max index and the min index

The two schemes in 4 and 5 are based on random codebook generation approach. The
codebook of sequences must be shared between the encoder and the decoder. We suggest
another scheme that requires a smaller codebook size.

6.1 Scheme

Codebook generation A set of nonnegative numbers {↵
1

,↵

2

, · · · ,↵
K

} is known to the
decoder. Each ↵

k

is the median of kth largest number in x

n ⇠ i.i.d. Lap(�).

11

Encoding At a stage k, the encoder sends the index of the maximum value and the index

of minimum value of x, i.e. m(k) = (m(k)

1

,m

(k)

2

), where

m

(k)

1

= argmax
i2[1:n]

x

(k)

i

,m

(k)

2

= argmin
i2[1:n]

x

(k)

i

For the next stage k + 1, set x(k+1) according to

x

(k+1)

i

=

8
><

>:

x

(k)

i

� ↵

k

if i = m

(k)

1

,

x

(k)

i

+ ↵

k

if i = m

(k)

2

,

x

(k)

i

otherwise.

Decoding At a stage k receivingm(k) = (m(k)

1

,m

(k)

2

), the decoder chooses the reproduction
sequence x̂

(k)(m(k)) according to

x̂

(k)

i

(m(k)) =

8
><

>:

↵

k

if i = m

(k)

1

,

�↵

k

if i = m

(k)

2

,

0 otherwise.

Analysis The rate for each step is not a constant. At step k, message (m(k)

1

,m

(k)

2

) is
uniform among n � 2(k � 1) indices, i.e., indices that were not received upto the
previous step.

R

1

= 2 log

✓
n

2

◆
/n, R

2

= R

1

+ 2 log

✓
n� 2

2

◆
/n, . . . , R

k

=
kX

i=1

2 log

✓
n� 2i+ 2

2

◆
/n

6.2 Performance Analysis

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R

D

D(R)=exp(−R)
G.S.R.(c=1.4)
G.S.R. Ternary(c=3)
max/min scheme

Figure 12: Achievable rate distortion pairs using max/min scheme

12

The performance of deterministic scheme is worse than the random coding scheme.
There are couple of facts we believe to be the reason. This scheme estimates the kth largest
and smallest index by the median of kth largest and smallest index. When k is small, the
kth largest and smallest index does not vary much, so the scheme works well. As k becomes
large, it varies much, so approximating it by the median does not perform well. We think
the scheme might perform better for a larger n.

This scheme has much smaller complexity. Thus, it is not surprising that this scheme
works worse than the others. Also, we think the takeaway message is that exploiting
randomness is good.

7 Application of our Schemes to Image Data

We test our scheme on an image data. We construct the source sequence x as follows:

1. Download Lena 512 by 512 image, and resize the image to a 44 by 44 image (shown
in Figure 13).

2. Take FFT of the 44 by 44 image.

3. Take the imaginary part of FFT coe�cients to construct y(shown in right side of
Figure 14).

4. Scale y by the L-1 norm of y and obtain x, i.e., x = y/kyk.

Figure 13: Lena image 44 by 44

−2000 −1000 0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

−1500 −1000 −500 0 500 1000 1500
0

20

40

60

80

100

120

140

160

180

Figure 14: FFT coe�cients: Real part(left) and Imaginary part(right)

13

7.1 Performance Analysis

As shown in Figure 15, the achievable rate distortion curve is close to the curve for iid
simulated Laplacian source. It works slightly better than the iid source. Although we do
not exploit the correlation of data, the achievable rate distortion curve is similar to the one
for iid Laplacian source.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D

Image
i.i.d. souce
D(R)=exp(−R)

Figure 15: Rate distortion region for real image vs. i.i.d source ⇠ Laplacian(1)

7.2 Comments

Our result does not guarantee that our scheme will work nicely on the real image data.
More experiments need to be done on various images. We also applied our scheme only on
the imaginary part of FFT coe�cients. That was because the real part of FFT coe�cients
did not follow Laplacian distribution closely. We think there would be a way to deal with
this. We would like to do more work in this direction.

8 Universality: for a Gaussian Source

We apply schemes to an i.i.d. Gaussian sequence. Rate distortion function for Gaussian
source with L-1 norm is unknown, so we plot Shannon lower bound instead.

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D

Shannon lower bound
G.S.R.(c=1.4)
G.S.R. Ternary(c=3)

Figure 16: Rate distortion regions of our scheme on Gaussian i.i.d. source

14

9 Conclusion

We conclude that the generalized successive refinement with continuous alphabets along
with fitting in 4.3.1 has the best performance among our schemes and even better than
expansion coding scheme in low rate. Also, the generalized successive refinement with
ternary alphabets along with fitting and permutation codebook in 5.4.2 requires the lowest
complexity and storage among our schemes. Since the expansion coding scheme performs
well in high rate, we can use time sharing in order to attain optimality of both schemes.
But, in this case, we cannot but lose rateless property for high rate.

Since our scheme works well for Gaussian source, we have a hope for our schemes to
be universal. The further works about whether any sources having the symmetric and
exponential tail distribution are applicable or not can be worked on.

Due to the fact that real data including images might contain many large components,
which makes real data deviate from Laplacian distribution, our schemes are sometimes not
e�cient to be applied into those data. Thus, we would like to check if the picture of nature
would be a better applicable source or the scheme becomes e�cient after filtering high
components.

10 Acknowledgement

We greatly thank Albert No.

References

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley,
1991.

[2] A. J. Viterbi and J. K. Omura, “Trellis encoding of memoryless discrete time sources
with a fidelity criterion,” IEEE Trans. on Information Theory, vol. 20, no. 3, pp. pp.
325–332, 1974.

[3] Y. Mastungaga and H. Yamamoto, “A coding theorem for lossy data compression by
ldpc codes,” IEEE Trans. on Information Theory, vol. 49, no. 9, pp. pp. 2225–2229,
2003.

[4] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels,” IEEE Trans. on Information Theory,
vol. 55, pp. pp. 3051–3073, Jul. 2009.

[5] S. B. Korada and R. L. Urbanke, “Polar codes are optimal for lossy source coding,”
IEEE Trans. on Information Theory, vol. 56, pp. pp. 1751–1768, Apr. 2010.

[6] R. Venkataramanan, T. Sarkar, and S. Tatikonda, “Lossy compression via sparse linear
regression: Computationally e�cient encoding and decoding,” IEEE Trans. on Infor-

mation Theory, vol. abs/1212.1707, 2012.

15

[7] S. B. Korada and R. L. Urbanke, “An mcmc approach to universal lossy compression of
analog sources,” IEEE Trans. on Signal Processing, vol. 60, no. 10, pp. pp. 5230–5240,
2012.

[8] O. K. H si and S. Vishwanath, “Lossy compression of exponential and laplacian sources
using expansion coding,” IEEE Trans. on Information Theory, vol. abs/1308.2338, 2013.

[9] A. El Gamal and Y. H. Kim, Network Information Theory. Cambridge University Press,
1st ed., 2011.

16

