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Laplacian source

Laplacian source X n, Xi is i.i.d. Laplacian(λ)

fX (x) =
1

2λ
e−|x |/λ
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Lossy compression of Laplacian source

Distortion: L1 norm

d(xn, x̂n) =
1

n

n∑
i=1

‖xi − x̂i‖1

Rate Distortion function

D(R) = λe−R

R(D) = log(λ/D)
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Lossy compression of Laplacian source

Rate distortion function R(D) = minp(x̂ |x) : E [d(x ,x̂)]≤D I (X ; X̂ )
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X̂

X̂ ∼ f
X̂ (x̂)

Z ∼ Laplacian(D)

X ∼ Laplacian(λ)
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Rate distortion achieving scheme

Source X n; Target distortion D; Let R = log(λ/D)

Generation of codebook

C = {X̂ n(1), · · · , X̂ n(enR)}, each X̂ n ∼
n∏

i=1

f (x̂i )

Encoding: Encode X n by

w = arg min
w ′∈[1:enR ]

‖X n − X̂ n(w ′)‖1

Decoding: The reproduced sequence is X̂ n(w)
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Rate Distortion achieving scheme
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Successive Refinement

Can we reduce the codebook size?

Yes! Successive refinement
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Successive Refinement

Step 1: Optimal lossy compression for Laplacian (λ) with target
distortion D1 at rate R1 = R2/2

I Receiver reproduces X̂ n(w1)

I Key observation: X n − X̂ n(w1) is Laplacian (D1)

Step 2: Optimal lossy compression for Laplacian (D1) with target
distortion D2 at rate R1 = R2/2

I Receiver reproduces X̂ n(w1) + X̂ n(w2)

I Key observation: X n − X̂ n(w1)− X̂ n(w2) is Laplacian (D2)

Codebook size: 2enR2/2 = enR2/2(step 1) +enR2/2(step 2)
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Successive Refinement
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Successive Refinement
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Generalized Successive Refinement

For any fixed L, codebook size = LenR/L

Can we reduce codebook size further?

Yes, Ln increases with n

We choose Ln = nR/ log n
Rate increment R/Ln = log n/n
Sub codebook size enR/Ln = n
Number of total codewords Lne

nR/Ln = n2R/ log n << LenR/L
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Performance of generalized successive refinement

n=1000, subcodebook size=1000, averaged over 1000 experiments
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Expansion

Better than expansion coding[Si, Koyluoglu, Vishwanath 2013]

Rateless and sequential!
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Generalized successive refinement with finite alphabet
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Performance
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Summary

We generalized successive refinement, and designed a practical code
for Laplacian source

Benefits of generalized successive refinement
I Small codebook size, low complexity

I Rateless and sequential
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Ongoing work

Focus on rateless and sequential scheme
I Sending max/min indices
I Applying our schemes on non-Laplacian sources, e.g. Gaussian
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