Hyeji Kim and Youngsuk Park (Stanford)

Lossy Compression for Laplacian source

Hyeji Kim and Youngsuk Park

Stanford University

June 3, 2014

Laplacian source

• Laplacian source X^n , X_i is i.i.d. Laplacian(λ)

$$f_X(x) = rac{1}{2\lambda} e^{-|x|/\lambda}$$

Lossy compression of Laplacian source

• Distortion: L1 norm

$$d(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n \|x_i - \hat{x}_i\|_1$$

• Rate Distortion function

$$D(R) = \lambda e^{-R}$$

 $R(D) = log(\lambda/D)$

Lossy compression of Laplacian source

• Rate distortion function $R(D) = \min_{p(\hat{x}|x): E[d(x,\hat{x})] \leq D} I(X; \hat{X})$

• Source X^n ; Target distortion D; Let $R = log(\lambda/D)$

• Source X^n ; Target distortion D; Let $R = log(\lambda/D)$

Generation of codebook

$$\mathcal{C} = \{\hat{X}^n(1), \cdots, \hat{X}^n(e^{nR})\}, ext{ each } \hat{X}^n \sim \prod_{i=1}^n f(\hat{x}_i)$$

- Source X^n ; Target distortion D; Let $R = log(\lambda/D)$
- Generation of codebook

$$\mathcal{C} = \{\hat{X}^n(1), \cdots, \hat{X}^n(e^{nR})\}, ext{ each } \hat{X}^n \sim \prod_{i=1}^n f(\hat{x}_i)$$

• Encoding: Encode X^n by

$$w = \arg\min_{w' \in [1:e^{nR}]} \|X^n - \hat{X}^n(w')\|_1$$

- Source X^n ; Target distortion D; Let $R = log(\lambda/D)$
- Generation of codebook

$$\mathcal{C} = \{\hat{X}^n(1), \cdots, \hat{X}^n(e^{nR})\}, ext{ each } \hat{X}^n \sim \prod_{i=1}^n f(\hat{x}_i)$$

• Encoding: Encode Xⁿ by

$$w = \arg\min_{w' \in [1:e^{nR}]} \|X^n - \hat{X}^n(w')\|_1$$

• Decoding: The reproduced sequence is $\hat{X}^n(w)$

• Codebook size to achieve distortion D_2 is e^{nR_2}

• Can we reduce the codebook size?

• Can we reduce the codebook size?

• Can we reduce the codebook size?

Yes! Successive refinement

Hyeji Kim and Youngsuk Park (Stanford)

• Step 1: Optimal lossy compression for Laplacian (λ) with target distortion D_1 at rate $R_1 = R_2/2$

- Step 1: Optimal lossy compression for Laplacian (λ) with target distortion D₁ at rate R₁ = R₂/2
 - Receiver reproduces $\hat{X}^n(w_1)$

- Step 1: Optimal lossy compression for Laplacian (λ) with target distortion D₁ at rate R₁ = R₂/2
 - Receiver reproduces $\hat{X}^n(w_1)$
 - Key observation: $X^n \hat{X}^n(w_1)$ is Laplacian (D_1)

- Step 1: Optimal lossy compression for Laplacian (λ) with target distortion D₁ at rate R₁ = R₂/2
 - Receiver reproduces $\hat{X}^n(w_1)$
 - Key observation: $X^n \hat{X}^n(w_1)$ is Laplacian (D_1)
- Step 2: Optimal lossy compression for Laplacian (D_1) with target distortion D_2 at rate $R_1 = R_2/2$

- Step 1: Optimal lossy compression for Laplacian (λ) with target distortion D₁ at rate R₁ = R₂/2
 - Receiver reproduces $\hat{X}^n(w_1)$
 - Key observation: $X^n \hat{X}^n(w_1)$ is Laplacian (D_1)
- Step 2: Optimal lossy compression for Laplacian (D_1) with target distortion D_2 at rate $R_1 = R_2/2$
 - Receiver reproduces $\hat{X}^n(w_1) + \hat{X}^n(w_2)$

- Step 1: Optimal lossy compression for Laplacian (λ) with target distortion D₁ at rate R₁ = R₂/2
 - Receiver reproduces $\hat{X}^n(w_1)$
 - Key observation: $X^n \hat{X}^n(w_1)$ is Laplacian (D_1)
- Step 2: Optimal lossy compression for Laplacian (D_1) with target distortion D_2 at rate $R_1 = R_2/2$
 - Receiver reproduces $\hat{X}^n(w_1) + \hat{X}^n(w_2)$
 - Key observation: $X^n \hat{X}^n(w_1) \hat{X}^n(w_2)$ is Laplacian (D_2)

- Step 1: Optimal lossy compression for Laplacian (λ) with target distortion D₁ at rate R₁ = R₂/2
 - Receiver reproduces $\hat{X}^n(w_1)$
 - Key observation: $X^n \hat{X}^n(w_1)$ is Laplacian (D_1)
- Step 2: Optimal lossy compression for Laplacian (D_1) with target distortion D_2 at rate $R_1 = R_2/2$
 - Receiver reproduces $\hat{X}^n(w_1) + \hat{X}^n(w_2)$
 - Key observation: $X^n \hat{X}^n(w_1) \hat{X}^n(w_2)$ is Laplacian (D_2)
- Codebook size: $2e^{nR_2/2} = e^{nR_2/2}(\text{step } 1) + e^{nR_2/2}(\text{step } 2)$

• Codebook size: $2e^{nR_2/2} = e^{nR_2/2}(\text{step 1}) + e^{nR_2/2}(\text{step 2})$

• Codebook size: $Le^{nR_2/L} << e^{nR_2}$

• For any fixed L, codebook size = $Le^{nR/L}$

- For any fixed L, codebook size = $Le^{nR/L}$
- Can we reduce codebook size further?

- For any fixed L, codebook size = $Le^{nR/L}$
- Can we reduce codebook size further?
- Yes, L_n increases with n

- For any fixed L, codebook size = $Le^{nR/L}$
- Can we reduce codebook size further?
- Yes, L_n increases with n
- We choose $L_n = nR/\log n$ Rate increment $R/L_n = \log n/n$ Sub codebook size $e^{nR/L_n} = n$ Number of total codewords $L_n e^{nR/L_n} = n^2 R/\log n \ll Le^{nR/L}$

Performance of generalized successive refinement

• n=1000, subcodebook size=1000, averaged over 1000 experiments

- Better than expansion coding[Si, Koyluoglu, Vishwanath 2013]
- Rateless and sequential!

Generalized successive refinement with finite alphabet

Generalized successive refinement with finite alphabet

• Codewords \hat{X}^n has infinite alphabet size

Hyeji Kim and Youngsuk Park (Stanford)

Generalized successive refinement with finite alphabet

• Codewords \hat{X}^n has finite alphabet size

Hyeji Kim and Youngsuk Park (Stanford)

Performance

- We generalized successive refinement, and designed a practical code for Laplacian source
- Benefits of generalized successive refinement
 - Small codebook size, low complexity
 - Rateless and sequential

- Focus on rateless and sequential scheme
 - Sending max/min indices
 - Applying our schemes on non-Laplacian sources, e.g. Gaussian

Special thanks to

Albert No