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Laplacian source
e Laplacian source X", X; is i.i.d. Laplacian(\)
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Lossy compression of Laplacian source

@ Distortion: L1 norm
1 n
d(x”’)’}”) — E z; HX,- - )?,‘Hl
1=

@ Rate Distortion function

D(R) = Xe R
R(D) = log(A/D)
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Lossy compression of Laplacian source

e Rate distortion function R(D) = minyx|x): E[d(x.2)]<0 ! (X; X)

oo D2 /)2
(%), (1- %)Laplacian()\) 1
X
Z ~ Laplacian(D)
X~ %) X ~ Laplacian()\)
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Rate distortion achieving scheme

@ Source X"; Target distortion D; Let R = log(\/D)
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Rate distortion achieving scheme

@ Source X"; Target distortion D; Let R = log(\/D)

@ Generation of codebook

~

C={X"(1),--- . X"(e")}, each X" ~ [] (%)
i=1
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Rate distortion achieving scheme

@ Source X"; Target distortion D; Let R = log(\/D)

@ Generation of codebook

C={X"(1),--- . X"(e")}, each X" ~ [] (%)
i=1
@ Encoding: Encode X" by

w=arg min [|X"—X"(w)|1

w’€[1:e"R]
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Rate distortion achieving scheme

@ Source X"; Target distortion D; Let R = log(\/D)

@ Generation of codebook
C={X"(1),--- . X"(e")}, each X" ~ [] (%)
i=1

@ Encoding: Encode X" by

w=arg min [|X"—X"(w)|1

w’€[1:e"R]

e Decoding: The reproduced sequence is X"(w)
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Rate Distortion achieving scheme

D(R) fora=1
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Rate Distortion achieving scheme

D(R) fora=1
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e Codebook size to achieve distortion D is "™
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Successive Refinement

@ Can we reduce the codebook size?
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Successive Refinement

@ Can we reduce the codebook size?

Yes! Successive refinement
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Successive Refinement

@ Step 1: Optimal lossy compression for Laplacian (\) with target
distortion D at rate Ry = R»/2
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Successive Refinement

@ Step 1: Optimal lossy compression for Laplacian (\) with target
distortion D at rate Ry = R»/2

> Receiver reproduces X" (w;)

> Key observation: X" — X"(w,) is Laplacian (D)

@ Step 2: Optimal lossy compression for Laplacian (D;) with target
distortion D, at rate Ry = Ry/2

> Receiver reproduces X"(w;) + X"(ws)
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Successive Refinement

@ Step 1: Optimal lossy compression for Laplacian (\) with target
distortion D at rate Ry = Ry/2

> Receiver reproduces X" (w;)

> Key observation: X" — X"(w,) is Laplacian (D)

@ Step 2: Optimal lossy compression for Laplacian (D;) with target
distortion D, at rate Ry = Ry/2

> Receiver reproduces X"(w;) + X"(ws)

» Key observation: X" — X"(w;) — X"(w,) is Laplacian (D,)
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Successive Refinement

@ Step 1: Optimal lossy compression for Laplacian (\) with target
distortion D at rate Ry = Ry/2

> Receiver reproduces X" (w;)

> Key observation: X" — X"(w,) is Laplacian (D)

@ Step 2: Optimal lossy compression for Laplacian (D;) with target
distortion D, at rate Ry = Ry/2

> Receiver reproduces X"(w;) + X"(ws)

» Key observation: X" — X"(w;) — X"(w,) is Laplacian (D,)

o Codebook size: 2e"R2/2 = e"R2/2(step 1) +e"R2/2(step 2)
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Successive Refinement

D(R) forA=1
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o Codebook size: 2e"/2 = "R2/2(step 1) +e"R2/2(step 2)
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Successive Refinement
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Generalized Successive Refinement

@ For any fixed L, codebook size = LenR/L
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Generalized Successive Refinement

@ For any fixed L, codebook size = LenR/L

@ Can we reduce codebook size further?
@ Yes, L, increases with n

e We choose L, = nR/logn
Rate increment R/L, = logn/n
Sub codebook size e"f/Ln = pn
Number of total codewords L,e"?/t» = n?R/logn << Le"R/t
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Performance of generalized successive refinement

@ n=1000, subcodebook size=1000, averaged over 1000 experiments
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@ Better than expansion coding[Si, Koyluoglu, Vishwanath 2013]

@ Rateless and sequentiall!
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Generalized successive refinement with finite alphabet
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Generalized successive refinement with finite alphabet
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o Codewords X" has infinite alphabet size
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Generalized successive refinement with finite alphabet
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o Codewords X" has finite alphabet size
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Performance
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Summary

@ We generalized successive refinement, and designed a practical code
for Laplacian source

o Benefits of generalized successive refinement
» Small codebook size, low complexity

» Rateless and sequential
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Ongoing work

@ Focus on rateless and sequential scheme
» Sending max/min indices
» Applying our schemes on non-Laplacian sources, e.g. Gaussian
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