Hypercontractivity, Maximal Correlation and Non-cooperative Simulation

Zi Yin and Youngsuk Park

Example1

DSBS(Doubly Symmetric Binary Source):

- Model:

Example1

DSBS(Doubly Symmetric Binary Source):

- Model:

- Common Information Measures:

$$
\begin{aligned}
I(X ; Y) & =1-H(\alpha) \\
\rho_{m}^{2}(X ; Y) & =s^{*}(X ; Y)=(1-2 \alpha)^{2}
\end{aligned}
$$

Example 2

SBES(Symmetric Binary Erasure Source):

- Model:

Example 2

SBES(Symmetric Binary Erasure Source):

- Model:

- Common Information Measures:

$$
I(X ; Y)=\rho_{m}^{2}(X ; Y)=s^{*}(X ; Y)=1-\epsilon
$$

Examples 3

BSBES(Binary Symmetric and Binary Erasure Source):

- Model:

Examples 3

BSBES(Binary Symmetric and Binary Erasure Source):

- Model:

- Common Information Measures:

$$
\begin{aligned}
I(X ; Y) & =(1-\epsilon)(1-H(\alpha)) \\
\rho_{m}^{2}(X ; Y) & =s^{*}(X ; Y)=(1-\epsilon)(1-2 \alpha)^{2}
\end{aligned}
$$

Non-Interactive Simulation

- Remind Why do we care two common inforamation meausres?

Non-Interactive Simulation

- Remind Why do we care two common inforamation meausres?
- Scenario: Non-Interactive Simulation

Non-Interactive Simulation

- Remind Why do we care two common inforamation meausres?
- Scenario: Non-Interactive Simulation

- Necessary condition: By using data processing inequality and tesorized property of ρ_{m}, r_{p}
- $\rho(X ; Y) \geq \rho(U, V)$
- $r_{p}(X ; Y) \geq r_{p}(U, V)$ for all p

Non-Interactive Simulation: Example 1

- Necessary Condition:
$\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow\left|1-2 \alpha_{1}\right| \geq\left|1-2 \alpha_{2}\right| \Leftrightarrow \alpha_{1} \leq \alpha_{2}$

Non-Interactive Simulation: Example 1

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$.

Non-Interactive Simulation: Example 1

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$. How?

Non-Interactive Simulation: Example 1

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$. How?

Non-Interactive Simulation: Example 1

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$. How?

- Can we make such virtual channel ?

Non-Interactive Simulation: Example 1

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$. How?

- Can we make such virtual channel ? Yes!

Non-Interactive Simulation: Example 1

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$. How?

- Can we make such virtual channel ? Yes!

For example, given a $\tilde{\alpha}$, there eixst n, K_{n} s.t $\mathbb{P}\left(S_{n}\left(Y^{n}\right)<K_{n}\right) \approx \tilde{\alpha}$.
Thus $Z \mid\left\{Y_{1}\right\}=Y_{1} \oplus 1$ if $S_{n}\left(Y^{n}\right)<K_{n}, Z \mid\left\{Y_{1}\right\}=Y_{1}$ otherwise.

Non-Interactive Simulation: Example 2

- Necessary Condition:

$$
\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq 1-\epsilon_{2} \Leftrightarrow \epsilon_{1} \leq \epsilon_{2}
$$

Non-Interactive Simulation: Example 2

- Necessary Condition:

$$
\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq 1-\epsilon_{2} \Leftrightarrow \epsilon_{1} \leq \epsilon_{2}
$$

- Sufficient Condition: $\epsilon_{1} \leq \epsilon_{2}$

Non-Interactive Simulation: Example 2

- Necessary Condition:

$$
\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq 1-\epsilon_{2} \Leftrightarrow \epsilon_{1} \leq \epsilon_{2}
$$

- Sufficient Condition: $\epsilon_{1} \leq \epsilon_{2}$
- How? Choose $\tilde{\epsilon}=\epsilon_{2}-\epsilon_{1}$

Non-Interactive Simulation: Example 2

- Necessary Condition:

$$
\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq 1-\epsilon_{2} \Leftrightarrow \epsilon_{1} \leq \epsilon_{2}
$$

- Sufficient Condition: $\epsilon_{1} \leq \epsilon_{2}$
- How? Choose $\tilde{\epsilon}=\epsilon_{2}-\epsilon_{1}$

$$
U=X_{1} \xrightarrow[{1 \xrightarrow[1-\epsilon_{1}]{ }}]{0} 10 \xrightarrow{1-\epsilon_{1}} 0 \quad Y_{1} \xrightarrow{0 \xrightarrow{0}{ }_{1-\tilde{\epsilon}}^{1-\tilde{\epsilon}} 1} 0
$$

Non-Interactive Simulation: Example 2

$\operatorname{SBES}\left(\epsilon_{1}\right)$

- Necessary Condition:

$$
\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq 1-\epsilon_{2} \Leftrightarrow \epsilon_{1} \leq \epsilon_{2}
$$

- Sufficient Condition: $\epsilon_{1} \leq \epsilon_{2}$
- How? Choose $\tilde{\epsilon}=\epsilon_{2}-\epsilon_{1}$

$$
U=X_{1} \xrightarrow[1]{0 \xrightarrow{1-\epsilon_{1}} 0} 10 \xrightarrow{1-\tilde{\epsilon}} 10
$$

- Bob makes additional erasure by observing Y^{n}, which consequently occur with probability $\tilde{\epsilon}$

Non-Interactive Simulation:Example 3

- Necessary Condition:

Non-Interactive Simulation:Example 3

- Necessary Condition:

$$
\text { - } \rho_{m}^{2}(X ; Y) \geq \rho_{m}^{2}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq\left(1-2 \alpha_{2}\right)^{2} \Leftrightarrow \epsilon_{1} \leq 4 \alpha_{2}\left(1-\alpha_{2}\right)
$$

Non-Interactive Simulation:Example 3

- Necessary Condition:
- $\rho_{m}^{2}(X ; Y) \geq \rho_{m}^{2}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq\left(1-2 \alpha_{2}\right)^{2} \Leftrightarrow \epsilon_{1} \leq 4 \alpha_{2}\left(1-\alpha_{2}\right)$
- Match the channel condition of less noisy DM-BC

Non-Interactive Simulation:Example 3

- Necessary Condition:
- $\rho_{m}^{2}(X ; Y) \geq \rho_{m}^{2}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq\left(1-2 \alpha_{2}\right)^{2} \Leftrightarrow \epsilon_{1} \leq 4 \alpha_{2}\left(1-\alpha_{2}\right)$
- Match the channel condition of less noisy DM-BC
- Sufficient Condition: $\epsilon_{1} \leq 2 \alpha_{2}$

Non-Interactive Simulation:Example 3

- Necessary Condition:
- $\rho_{m}^{2}(X ; Y) \geq \rho_{m}^{2}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq\left(1-2 \alpha_{2}\right)^{2} \Leftrightarrow \epsilon_{1} \leq 4 \alpha_{2}\left(1-\alpha_{2}\right)$
- Match the channel condition of less noisy DM-BC
- Sufficient Condition: $\epsilon_{1} \leq 2 \alpha_{2}$
- Match the channel condition of degraded DM-BC.

Non-Interactive Simulation:Example 3

- Necessary Condition:
- $\rho_{m}^{2}(X ; Y) \geq \rho_{m}^{2}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq\left(1-2 \alpha_{2}\right)^{2} \Leftrightarrow \epsilon_{1} \leq 4 \alpha_{2}\left(1-\alpha_{2}\right)$
- Match the channel condition of less noisy DM-BC
- Sufficient Condition: $\epsilon_{1} \leq 2 \alpha_{2}$
- Match the channel condition of degraded DM-BC.
- What if $2 \alpha_{2} \leq \epsilon_{1} \leq \epsilon_{1} \leq 4 \alpha_{2}\left(1-\alpha_{2}\right)$?

Non-Interactive Simulation:Example 3

- Necessary Condition:
- $\rho_{m}^{2}(X ; Y) \geq \rho_{m}^{2}(U ; V) \Leftrightarrow 1-\epsilon_{1} \geq\left(1-2 \alpha_{2}\right)^{2} \Leftrightarrow \epsilon_{1} \leq 4 \alpha_{2}\left(1-\alpha_{2}\right)$
- Match the channel condition of less noisy DM-BC
- Sufficient Condition: $\epsilon_{1} \leq 2 \alpha_{2}$
- Match the channel condition of degraded DM-BC.
- What if $2 \alpha_{2} \leq \epsilon_{1} \leq \epsilon_{1} \leq 4 \alpha_{2}\left(1-\alpha_{2}\right)$? Let's see the achievability first.

Non-Interactive Simulation:Example 3

- Sufficient Condition: $\epsilon_{1} \leq 2 \alpha_{2}$

Non-Interactive Simulation:Example 3

- Sufficient Condition: $\epsilon_{1} \leq 2 \alpha_{2}$
- How? Choose $\tilde{\alpha}$ satisfying $\left(1-\epsilon_{1}\right)(\tilde{\alpha})=\alpha$

Non-Interactive Simulation:Example 3

$\operatorname{SBES}\left(\epsilon_{1}\right)$

$\operatorname{DSBS}\left(\alpha_{2}\right)$

- Sufficient Condition: $\epsilon_{1} \leq 2 \alpha_{2}$
- How? Choose $\tilde{\alpha}$ satisfying $\left(1-\epsilon_{1}\right)(\tilde{\alpha})=\alpha$

- What if $2 \alpha_{2} \leq \epsilon_{1}$?

Non-Interactive Simulation:Example 3

$\operatorname{SBES}\left(\epsilon_{1}\right)$

$\operatorname{DSBS}\left(\alpha_{2}\right)$

- Sufficient Condition: $\epsilon_{1} \leq 2 \alpha_{2}$
- How? Choose $\tilde{\alpha}$ satisfying $\left(1-\epsilon_{1}\right)(\tilde{\alpha})=\alpha$

- What if $2 \alpha_{2} \leq \epsilon_{1}$? We don't know (because at least one of crossover probability can be greater than α_{2}.)

Non-Interactive Simulation:Example 4

- Necessary Condition:

$$
\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow\left(1-\alpha_{1}\right)^{2} \geq\left(1-\epsilon_{2}\right)\left(1-2 \alpha_{2}\right)^{2}
$$

Non-Interactive Simulation:Example 4

- Necessary Condition:

$$
\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow\left(1-\alpha_{1}\right)^{2} \geq\left(1-\epsilon_{2}\right)\left(1-2 \alpha_{2}\right)^{2}
$$

- Sufficient Condition:

$$
\text { - } \alpha_{1} \leq \alpha_{2} \Leftrightarrow\left(1-2 \alpha_{1}\right)^{2} \geq\left(1-2 \alpha_{2}\right)^{2}
$$

Non-Interactive Simulation:Example 4

- Necessary Condition:

$$
\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow\left(1-\alpha_{1}\right)^{2} \geq\left(1-\epsilon_{2}\right)\left(1-2 \alpha_{2}\right)^{2}
$$

- Sufficient Condition:
- $\alpha_{1} \leq \alpha_{2} \Leftrightarrow\left(1-2 \alpha_{1}\right)^{2} \geq\left(1-2 \alpha_{2}\right)^{2}$
- How? Next slide.

Non-Interactive Simulation:Example 4

- Necessary Condition:

$$
\rho_{m}(X ; Y) \geq \rho_{m}(U ; V) \Leftrightarrow\left(1-\alpha_{1}\right)^{2} \geq\left(1-\epsilon_{2}\right)\left(1-2 \alpha_{2}\right)^{2}
$$

- Sufficient Condition:
- $\alpha_{1} \leq \alpha_{2} \Leftrightarrow\left(1-2 \alpha_{1}\right)^{2} \geq\left(1-2 \alpha_{2}\right)^{2}$
- How? Next slide.
- What about the $\left(1-\epsilon_{2}\right)\left(1-2 \alpha_{2}\right)^{2} \leq\left(1-2 \alpha_{1}\right)^{2} \leq\left(1-2 \alpha_{2}\right)^{2}$?

Non-Interactive Simulation:Example 4

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$

Non-Interactive Simulation:Example 4

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$
- How? Both Alice and Bob do their jobs.

Non-Interactive Simulation:Example 4

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$
- How? Both Alice and Bob do their jobs.

Non-Interactive Simulation:Example 4

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$
- How? Both Alice and Bob do their jobs.

- For above virtual channel, U, V is BSBES

Non-Interactive Simulation:Example 4

- Sufficient Condition: $\alpha_{1} \leq \alpha_{2}$
- How? Both Alice and Bob do their jobs.

- For above virtual channel, U, V is BSBES
- In previous example, we showed that Both can generate BEC and Alice can also generate BSC.

Non-Interactive Simulation:Example 5

- Note in the previous 4 examples, ρ_{m} and s^{*} are the same, hence they always gave same necessary condition.. Question: Are there are cases where one is more powerful?

Non-Interactive Simulation:Example 5

- Note in the previous 4 examples, ρ_{m} and s^{*} are the same, hence they always gave same necessary condition.. Question: Are there are cases where one is more powerful?
- Answer (Kamath '12): Yes, consider (X, Y) is $\operatorname{DSBS}(\alpha)$ and Where we want to simulate $(U, V) \sim p(u, v)$ binary, with

$$
\mathbb{P}_{U, V}(0,0)=\mathbb{P}_{U, V}(0,1)=\mathbb{P}_{U, V}(1,0)=\frac{1}{3}
$$

Non-Interactive Simulation:Example 5

- When $\alpha<\frac{1}{4}$,

$$
\rho_{m}(X ; Y)=1-2 \alpha \geq \frac{1}{2}=\rho_{m}(U, V)
$$

So the maximal correlation criteria didn't say NO.

Non-Interactive Simulation:Example 5

- When $\alpha<\frac{1}{4}$,

$$
\rho_{m}(X ; Y)=1-2 \alpha \geq \frac{1}{2}=\rho_{m}(U, V)
$$

So the maximal correlation criteria didn't say NO.

- If simulation is possible, $\operatorname{Pr}\{\tilde{U}=1\} \approx \frac{1}{3}$, where $\tilde{U}=f\left(X^{n}\right)$. Similarly $\operatorname{Pr}\{\tilde{V}=1\} \approx \frac{1}{3}$. Also it is required that $\operatorname{Pr}\{\tilde{U}=1, \tilde{V}=1\} \approx 0$.

Non-Interactive Simulation:Example 5

- When $\alpha<\frac{1}{4}$,

$$
\rho_{m}(X ; Y)=1-2 \alpha \geq \frac{1}{2}=\rho_{m}(U, V)
$$

So the maximal correlation criteria didn't say NO.

- If simulation is possible, $\operatorname{Pr}\{\tilde{U}=1\} \approx \frac{1}{3}$, where $\tilde{U}=f\left(X^{n}\right)$. Similarly $\operatorname{Pr}\{\tilde{V}=1\} \approx \frac{1}{3}$. Also it is required that $\operatorname{Pr}\{\tilde{U}=1, \tilde{V}=1\} \approx 0$.
- But for $p=2 \alpha$, it can be shown that $r_{p}(X ; Y)=2 \alpha$ as well.

Non-Interactive Simulation:Example 5

- When $\alpha<\frac{1}{4}$,

$$
\rho_{m}(X ; Y)=1-2 \alpha \geq \frac{1}{2}=\rho_{m}(U, V)
$$

So the maximal correlation criteria didn't say NO.

- If simulation is possible, $\operatorname{Pr}\{\tilde{U}=1\} \approx \frac{1}{3}$, where $\tilde{U}=f\left(X^{n}\right)$.

Similarly $\operatorname{Pr}\{\tilde{V}=1\} \approx \frac{1}{3}$. Also it is required that
$\operatorname{Pr}\{\tilde{U}=1, \tilde{V}=1\} \approx 0$.

- But for $p=2 \alpha$, it can be shown that $r_{p}(X ; Y)=2 \alpha$ as well.
- Then hypercontractivity gives

$$
\operatorname{Pr}\{\tilde{U}=1, \tilde{V}=1\} \geq \operatorname{Pr}\{\tilde{U}=1\}^{\frac{1}{2 \alpha}} \operatorname{Pr}\{\tilde{V}=1\}^{\frac{1}{2 \alpha}},
$$

Clearly the LHS is bounded away from zero, a contradiction!

Summary

- We explored the common information measures $\rho_{m}(X ; Y),, s^{*}(X ; Y)$; definition, property, and examples

Summary

- We explored the common information measures $\rho_{m}(X ; Y),, s^{*}(X ; Y)$; definition, property, and examples
- Two measures gives necessary condition of Non-Interactive Simulation
- These conditions are tight for some cases

Summary

- We explored the common information measures $\rho_{m}(X ; Y),, s^{*}(X ; Y)$; definition, property, and examples
- Two measures gives necessary condition of Non-Interactive Simulation
- These conditions are tight for some cases
- Some results cannot be obtained only from mutual information

Summary

- We explored the common information measures $\rho_{m}(X ; Y),, s^{*}(X ; Y)$; definition, property, and examples
- Two measures gives necessary condition of Non-Interactive Simulation
- These conditions are tight for some cases
- Some results cannot be obtained only from mutual information

