Hypercontractivity, Maximal Correlation and Non-cooperative Simulation

Zi Yin and Youngsuk Park

Example1

DSBS(Doubly Symmetric Binary Source):

• Model:

Example1

DSBS(Doubly Symmetric Binary Source):

• Model:

• Common Information Measures:

$$I(X;Y) = 1 - H(\alpha)$$

$$\rho_m^2(X;Y) = s^*(X;Y) = (1 - 2\alpha)^2$$

SBES(Symmetric Binary Erasure Source):

• Model:

Example 2

SBES(Symmetric Binary Erasure Source):

• Model:

• Common Information Measures:

$$I(X;Y) = \rho_m^2(X;Y) = s^*(X;Y) = 1 - \epsilon$$

BSBES(Binary Symmetric and Binary Erasure Source): • Model:

BSBES(Binary Symmetric and Binary Erasure Source): • Model:

• Common Information Measures:

$$I(X;Y) = (1 - \epsilon)(1 - H(\alpha))$$

$$\rho_m^2(X;Y) = s^*(X;Y) = (1 - \epsilon)(1 - 2\alpha)^2$$

• Remind Why do we care two common inforamation meausres?

- Remind Why do we care two common inforamation meausres?
- Scenario: Non-Interactive Simulation

- Remind Why do we care two common inforamation meausres?
- Scenario: Non-Interactive Simulation

• Necessary condition: By using data processing inequality and tesorized property of ρ_m, r_p

•
$$\rho(X;Y) \ge \rho(U,V)$$

•
$$r_p(X;Y) \ge r_p(U,V)$$
 for all p

• Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow |1-2\alpha_1| \ge |1-2\alpha_2| \Leftrightarrow \alpha_1 \le \alpha_2$

• Sufficient Condition: $\alpha_1 \leq \alpha_2$.

• Sufficient Condition: $\alpha_1 \leq \alpha_2$. How?

• Sufficient Condition: $\alpha_1 \leq \alpha_2$. How?

• Sufficient Condition: $\alpha_1 \leq \alpha_2$. How?

• Can we make such virtual channel ?

• Sufficient Condition: $\alpha_1 \leq \alpha_2$. How?

• Can we make such virtual channel ? Yes!

• Sufficient Condition: $\alpha_1 \leq \alpha_2$. How?

• Can we make such virtual channel ? Yes! For example, given a $\tilde{\alpha}$, there eixst n, K_n s.t $\mathbb{P}(S_n(Y^n) < K_n) \approx \tilde{\alpha}$. Thus $Z|\{Y_1\} = Y_1 \oplus 1$ if $S_n(Y^n) < K_n$, $Z|\{Y_1\} = Y_1$ otherwise.

• Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow 1 - \epsilon_1 \ge 1 - \epsilon_2 \Leftrightarrow \epsilon_1 \le \epsilon_2$

• Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow 1 - \epsilon_1 \ge 1 - \epsilon_2 \Leftrightarrow \epsilon_1 \le \epsilon_2$

• Sufficient Condition: $\epsilon_1 \leq \epsilon_2$

• Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow 1 - \epsilon_1 \ge 1 - \epsilon_2 \Leftrightarrow \epsilon_1 \le \epsilon_2$

- Sufficient Condition: $\epsilon_1 \leq \epsilon_2$
 - How? Choose $\tilde{\epsilon} = \epsilon_2 \epsilon_1$

• Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow 1 - \epsilon_1 \ge 1 - \epsilon_2 \Leftrightarrow \epsilon_1 \le \epsilon_2$

- Sufficient Condition: $\epsilon_1 \leq \epsilon_2$
 - How? Choose $\tilde{\epsilon} = \epsilon_2 \epsilon_1$

- Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow 1 - \epsilon_1 \ge 1 - \epsilon_2 \Leftrightarrow \epsilon_1 \le \epsilon_2$
- Sufficient Condition: $\epsilon_1 \leq \epsilon_2$
 - How? Choose $\tilde{\epsilon} = \epsilon_2 \epsilon_1$

• Bob makes additional erasure by observing $Y^n,$ which consequently occur with probability $\tilde{\epsilon}$

• Necessary Condition:

- Necessary Condition:
 - $\rho_m^2(X;Y) \ge \rho_m^2(U;V) \Leftrightarrow 1 \epsilon_1 \ge (1 2\alpha_2)^2 \Leftrightarrow \epsilon_1 \le 4\alpha_2(1 \alpha_2)$

• Necessary Condition:

- $\rho_m^2(X;Y) \ge \rho_m^2(U;V) \Leftrightarrow 1 \epsilon_1 \ge (1 2\alpha_2)^2 \Leftrightarrow \epsilon_1 \le 4\alpha_2(1 \alpha_2)$
- Match the channel condition of less noisy DM-BC

- Necessary Condition:
 - $\rho_m^2(X;Y) \ge \rho_m^2(U;V) \Leftrightarrow 1 \epsilon_1 \ge (1 2\alpha_2)^2 \Leftrightarrow \epsilon_1 \le 4\alpha_2(1 \alpha_2)$
 - Match the channel condition of less noisy DM-BC
- Sufficient Condition: $\epsilon_1 \leq 2\alpha_2$

- Necessary Condition:
 - $\rho_m^2(X;Y) \ge \rho_m^2(U;V) \Leftrightarrow 1 \epsilon_1 \ge (1 2\alpha_2)^2 \Leftrightarrow \epsilon_1 \le 4\alpha_2(1 \alpha_2)$
 - Match the channel condition of less noisy DM-BC
- Sufficient Condition: $\epsilon_1 \leq 2\alpha_2$
 - Match the channel condition of degraded DM-BC.

- Necessary Condition:
 - $\rho_m^2(X;Y) \ge \rho_m^2(U;V) \Leftrightarrow 1 \epsilon_1 \ge (1 2\alpha_2)^2 \Leftrightarrow \epsilon_1 \le 4\alpha_2(1 \alpha_2)$
 - Match the channel condition of less noisy DM-BC
- Sufficient Condition: $\epsilon_1 \leq 2\alpha_2$
 - Match the channel condition of degraded DM-BC.
- What if $2\alpha_2 \leq \epsilon_1 \leq \epsilon_1 \leq 4\alpha_2(1-\alpha_2)$?

- Necessary Condition:
 - $\rho_m^2(X;Y) \ge \rho_m^2(U;V) \Leftrightarrow 1 \epsilon_1 \ge (1 2\alpha_2)^2 \Leftrightarrow \epsilon_1 \le 4\alpha_2(1 \alpha_2)$
 - Match the channel condition of less noisy DM-BC
- Sufficient Condition: $\epsilon_1 \leq 2\alpha_2$
 - Match the channel condition of degraded DM-BC.
- What if $2\alpha_2 \le \epsilon_1 \le \epsilon_1 \le 4\alpha_2(1-\alpha_2)$? Let's see the achievability first.

• Sufficient Condition: $\epsilon_1 \leq 2\alpha_2$

• What if $2\alpha_2 \leq \epsilon_1$?

• What if $2\alpha_2 \le \epsilon_1$? We don't know (because at least one of crossover probability can be greater than α_2 .)

• Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow (1-\alpha_1)^2 \ge (1-\epsilon_2)(1-2\alpha_2)^2$

- Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow (1-\alpha_1)^2 \ge (1-\epsilon_2)(1-2\alpha_2)^2$
- Sufficient Condition:

•
$$\alpha_1 \leq \alpha_2 \Leftrightarrow (1 - 2\alpha_1)^2 \geq (1 - 2\alpha_2)^2$$

- Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow (1-\alpha_1)^2 \ge (1-\epsilon_2)(1-2\alpha_2)^2$
- Sufficient Condition:
 - $\alpha_1 \leq \alpha_2 \Leftrightarrow (1 2\alpha_1)^2 \geq (1 2\alpha_2)^2$
 - How? Next slide.

- Necessary Condition: $\rho_m(X;Y) \ge \rho_m(U;V) \Leftrightarrow (1-\alpha_1)^2 \ge (1-\epsilon_2)(1-2\alpha_2)^2$
- Sufficient Condition:
 - $\alpha_1 \leq \alpha_2 \Leftrightarrow (1 2\alpha_1)^2 \geq (1 2\alpha_2)^2$
 - How? Next slide.
- What about the $(1 \epsilon_2)(1 2\alpha_2)^2 \le (1 2\alpha_1)^2 \le (1 2\alpha_2)^2$?

• Sufficient Condition: $\alpha_1 \leq \alpha_2$

- Sufficient Condition: $\alpha_1 \leq \alpha_2$
- How? Both Alice and Bob do their jobs.

- Sufficient Condition: $\alpha_1 \leq \alpha_2$
- How? Both Alice and Bob do their jobs.

- Sufficient Condition: $\alpha_1 \leq \alpha_2$
- How? Both Alice and Bob do their jobs.

• For above virtual channel, U, V is BSBES

- Sufficient Condition: $\alpha_1 \leq \alpha_2$
- How? Both Alice and Bob do their jobs.

- For above virtual channel, U, V is BSBES
- In previous example, we showed that Both can generate BEC and Alice can also generate BSC.

 Note in the previous 4 examples, ρ_m and s^{*} are the same, hence they always gave same necessary condition..
 Question: Are there are cases where one is more powerful?

- Note in the previous 4 examples, ρ_m and s^{*} are the same, hence they always gave same necessary condition.. Question: Are there are cases where one is more powerful?
- Answer (Kamath '12): Yes, consider (X, Y) is DSBS (α) and Where we want to simulate $(U, V) \sim p(u, v)$ binary, with

$$\mathbb{P}_{U,V}(0,0) = \mathbb{P}_{U,V}(0,1) = \mathbb{P}_{U,V}(1,0) = \frac{1}{3}$$

• When $\alpha < \frac{1}{4}$,

$$\rho_m(X;Y) = 1 - 2\alpha \ge \frac{1}{2} = \rho_m(U,V)$$

So the maximal correlation criteria didn't say NO.

• When $\alpha < \frac{1}{4}$,

$$\rho_m(X;Y) = 1 - 2\alpha \ge \frac{1}{2} = \rho_m(U,V)$$

So the maximal correlation criteria didn't say NO.

• If simulation is possible, $Pr{\{\tilde{U}=1\}} \approx \frac{1}{3}$, where $\tilde{U} = f(X^n)$. Similarly $Pr{\{\tilde{V}=1\}} \approx \frac{1}{3}$. Also it is required that $Pr{\{\tilde{U}=1,\tilde{V}=1\}} \approx 0$.

• When $\alpha < \frac{1}{4}$,

$$\rho_m(X;Y) = 1 - 2\alpha \ge \frac{1}{2} = \rho_m(U,V)$$

So the maximal correlation criteria didn't say NO.

- If simulation is possible, $Pr{\{\tilde{U}=1\}} \approx \frac{1}{3}$, where $\tilde{U} = f(X^n)$. Similarly $Pr{\{\tilde{V}=1\}} \approx \frac{1}{3}$. Also it is required that $Pr{\{\tilde{U}=1,\tilde{V}=1\}} \approx 0$.
- But for $p = 2\alpha$, it can be shown that $r_p(X;Y) = 2\alpha$ as well.

 \bullet When $\alpha < \frac{1}{4}$,

$$\rho_m(X;Y) = 1 - 2\alpha \ge \frac{1}{2} = \rho_m(U,V)$$

So the maximal correlation criteria didn't say NO.

- If simulation is possible, $Pr{\{\tilde{U}=1\}} \approx \frac{1}{3}$, where $\tilde{U} = f(X^n)$. Similarly $Pr{\{\tilde{V}=1\}} \approx \frac{1}{3}$. Also it is required that $Pr{\{\tilde{U}=1,\tilde{V}=1\}} \approx 0$.
- But for $p = 2\alpha$, it can be shown that $r_p(X; Y) = 2\alpha$ as well.
- Then hypercontractivity gives

$$Pr\{\tilde{U}=1,\tilde{V}=1\} \geq Pr\{\tilde{U}=1\}^{\frac{1}{2\alpha}}Pr\{\tilde{V}=1\}^{\frac{1}{2\alpha}},$$

Clearly the LHS is bounded away from zero, a contradiction!

• We explored the common information measures $\rho_m(X;Y),\,s^*(X;Y);$ definition, property, and examples

- We explored the common information measures $\rho_m(X;Y), s^*(X;Y)$; definition, property, and examples
- Two measures gives necessary condition of Non-Interactive Simulation
 - These conditions are tight for some cases

- We explored the common information measures $\rho_m(X;Y), s^*(X;Y)$; definition, property, and examples
- Two measures gives necessary condition of Non-Interactive Simulation
 - These conditions are tight for some cases
 - Some results cannot be obtained only from mutual information

٠

- We explored the common information measures $\rho_m(X;Y), s^*(X;Y)$; definition, property, and examples
- Two measures gives necessary condition of Non-Interactive Simulation
 - These conditions are tight for some cases
 - Some results cannot be obtained only from mutual information