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Universal Coding with Model Classes

Traditional Shannon theory assume a (probabilistic) model of data is
known, and aims at compressing the data optimally w.r.t. the model.
e.g. Huffman coding and Arithmetic coding

In the case where the actual model is unknown, we can still
compress the sequence with universal compression.
e.g. Lempel Ziv, and CTW

Aren’t the LZ good enough?

Yes. Universal w.r.t class of finite-state coders, and converging to
entropy rate for stationary ergodic distribution
No. convergence is slow

We explore CTW.
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Universal Compression and Universal Estimation

A good compressor implies a good estimate of the source
distribution.

For a given sequence xn, P(xn) be true distribution and PL(xn) be
estimated distribution.

We know that PL(xn) = 2−L(xn)

kn
achieves the minimum expected

code length where kn =
∑
xn2−L(xn) ≤ 1 by Kraft Inequality

Then the expected redundancy is

Redn(PL,P) = E[L(xn)− log
1

P(xn)
] (1)

= − log kn +D(P‖PL) (2)

A good compressor has a small redundacny. Therefore, a good
compressor implies a good estimate of the true distribution.
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Two Entropy Coding for known parameters

Huffman code an optimal
prefix code
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What if parameters are unknown?
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Bernoulli Model: Two part code

Let C = {Pθ, θ ∈ [0, 1]}, Xn iid∼ Bern(θ). But we don’t know θ.

Can we we still design the compressor?
Yes! with acceptable pointwise redundacny for all xn

Note that minC∈C LC(xn) = minθ∈[0,1] log 1
Pθ = nĤ(xn) = nh2(θ̂)

Two part code: Use dlog(n+ 1)e bits to encode n1 and then tune
code to θ = n1

n .

Then

Redn(L, xn) =
log(n+ 1) + 2

n
→ 0

Natural but dependent on n(not sequential)
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Bernoulli Model: Mixture and Plug in code

Better code:

Enumerate all
(
n
n1

)
sequences with n1(n1 is away

from 0, n), L(xn) = log
(
n
n1

)
Redn(L, xn) ≤ log(n+ 1) + 2

2n
+O(

1

n
)→ 0 (3)

Uniform assignment over types is equivalent to uniform mixture,
PL(xn) =

∫ 1

0
θn0 θ̄n11dθ =

(
n
n1

)−1 1
n+1

=
∏n−1
t=0 pL(xtt+1|xt) where

where pL(0|xt) = n0(x
t)+1

t+2
is Rule of succession

Use bias estimator of the conditional probability(plug-in approach)

Mixture code Mix over Dirichlet’s density : dθ

Γ( 1
2 )2
√
θ(1−θ)

= dw(θ)

Redn(L, xn) ≤ log(n+ 1)

2n
+O(

1

n
)→ 0 (4)

Note that PL(xn) =
∫ 1

0
Pθ(xn)dw(θ) =

∏n−1
t=0 pL(xtt+1|xt)

where pL(0|xt) =
n0(x

t)+ 1
2

t+1
is KT(Krichevski-Trofimov) estimator

only depending on n0, n1
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n0(x

t)+ 1
2

t+1
is KT(Krichevski-Trofimov) estimator

only depending on n0, n1
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Tree Source with Known Model

If the next symbol depends on past symbols, then Tree model is a good
choice.
Let a binary tree have leaves S. Then θ ∈ R|S|.
For a fixed xn, define the number of 0’s after s as n0(s) . Similarly
define n1(s)

For a xn = 00 | 0100101100, sequence
n = 10, n0(10) = 2, n1(10) = 1

For each s, calculate KT estimator for PL,s(n0(s), n1(s)) and use
PL(xn) =

∏
s∈S PL,s(n0(s), n1(s)) for Arithmetic coding

Then redundancy is

Redn(L, xn) = L(xn)− log
1

P(xn)
(5)

< log(
1

PL(xn)
) + 2− log

1

P(xn)
(6)

= log
1∏

s∈S PL,s(n0(s), n1(s))
− log

1

P(xn)
+ 2 (7)
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Tree Source with Known Model

Continued.

Redn(L, xn) = log(

∏
s∈S θs

n0(s)θ̄s
n1(s)∏

s∈S PL,s(n0(s), n1(s))
) + 2 (8)

≤
∑
s∈S

(
1

2
log(n0(s) + n1(s)) + 1

)
+ 2 (9)

≤ |S|
(

1

2
log

∑
s∈S(n0(s) + n1(s))

|S|
+ 1

)
+ 2 (10)

= |S|
(

1

2
log

n

|S|
+ 1

)
+ 2 (11)

O(log(n)) term is the cost for unknown paramters θs, s ∈ S
This upperbound through KT estimator meets the lowerbound of

Minimax redundancy, i.e., |S|2 log n+ o(1)
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Tree Source with Unknown Model

What if we do not know the tree model either?

With assumption that tree has at most D depth,

Two part code: Use nT bits for representing tree and then use KT
estimator for that tree, LT (xn) + nT
But it should be optimized over all trees and is not sequentially
implementable

CTW(Context Tree Weighting) defines a weighted coding
distribution which takes into account all the possible tree sources
that could lead to the sequence that we observe

Question: The leaves S from this context tree might be different
from actual tree model. But still good?

Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW)



Tree Source with Unknown Model

What if we do not know the tree model either?
With assumption that tree has at most D depth,

Two part code: Use nT bits for representing tree and then use KT
estimator for that tree, LT (xn) + nT
But it should be optimized over all trees and is not sequentially
implementable

CTW(Context Tree Weighting) defines a weighted coding
distribution which takes into account all the possible tree sources
that could lead to the sequence that we observe

Question: The leaves S from this context tree might be different
from actual tree model. But still good?

Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW)



Tree Source with Unknown Model

What if we do not know the tree model either?
With assumption that tree has at most D depth,

Two part code: Use nT bits for representing tree and then use KT
estimator for that tree, LT (xn) + nT

But it should be optimized over all trees and is not sequentially
implementable

CTW(Context Tree Weighting) defines a weighted coding
distribution which takes into account all the possible tree sources
that could lead to the sequence that we observe

Question: The leaves S from this context tree might be different
from actual tree model. But still good?

Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW)



Tree Source with Unknown Model

What if we do not know the tree model either?
With assumption that tree has at most D depth,

Two part code: Use nT bits for representing tree and then use KT
estimator for that tree, LT (xn) + nT

But it should be optimized over all trees and is not sequentially
implementable

CTW(Context Tree Weighting) defines a weighted coding
distribution which takes into account all the possible tree sources
that could lead to the sequence that we observe

Question: The leaves S from this context tree might be different
from actual tree model. But still good?

Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW)



Tree Source with Unknown Model

What if we do not know the tree model either?
With assumption that tree has at most D depth,

Two part code: Use nT bits for representing tree and then use KT
estimator for that tree, LT (xn) + nT
But it should be optimized over all trees and is not sequentially
implementable

CTW(Context Tree Weighting) defines a weighted coding
distribution which takes into account all the possible tree sources
that could lead to the sequence that we observe

Question: The leaves S from this context tree might be different
from actual tree model. But still good?

Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW)



Tree Source with Unknown Model

What if we do not know the tree model either?
With assumption that tree has at most D depth,

Two part code: Use nT bits for representing tree and then use KT
estimator for that tree, LT (xn) + nT
But it should be optimized over all trees and is not sequentially
implementable

CTW(Context Tree Weighting) defines a weighted coding
distribution which takes into account all the possible tree sources
that could lead to the sequence that we observe

Question: The leaves S from this context tree might be different
from actual tree model. But still good?

Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW)



Tree Source with Unknown Model

What if we do not know the tree model either?
With assumption that tree has at most D depth,

Two part code: Use nT bits for representing tree and then use KT
estimator for that tree, LT (xn) + nT
But it should be optimized over all trees and is not sequentially
implementable

CTW(Context Tree Weighting) defines a weighted coding
distribution which takes into account all the possible tree sources
that could lead to the sequence that we observe

Question: The leaves S from this context tree might be different
from actual tree model. But still good?

Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW)



Tree Source with Unknown Model

What if we do not know the tree model either?
With assumption that tree has at most D depth,

Two part code: Use nT bits for representing tree and then use KT
estimator for that tree, LT (xn) + nT
But it should be optimized over all trees and is not sequentially
implementable

CTW(Context Tree Weighting) defines a weighted coding
distribution which takes into account all the possible tree sources
that could lead to the sequence that we observe

Question: The leaves S from this context tree might be different
from actual tree model. But still good?

Youngsuk Park Universal Loseless Compression: Context Tree Weighting(CTW)



Tree Source with Unknown Model

Calculate n0(s), n1(s) for all s ∈ {s | s ∈ {0, 1}∗, |s| ≤ D}
s = λ

s = 0

s = 00

0

s = 01

1

0

s = 1

s = 10

s = 0

s = 11

s = 1

1
Ex) xn = 00 | 0100101100
n0(0) = 3, n1(0) = 3
...
n0(10) = 2, n1(10) = 1
(xn = 0100101100)

Calculate corresponding KT estimatorPe(n0(s), n1(s)) for each s.

Assign weighting probability

Psw =

{
Pe(n0(s), n1(s)) if l(s) = D
Pe(n0(s),n1(s))+P0s

w P
1s
w

2 if l(s) 6= D
(12)

And take PL(xn) = Pλw(xn) and use it for Arithmetic coding.

Corollary: Suppose xn is drawn from P1 or P2. The one can achieve
a redundacny of 1 bit by using the weighted distribution Pw = P1+P2

2
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Tree Source with Unknown Model

Then

Pλw(xn) =
∑

S′∈all TD

2ΓD(S′) ·
∏
s∈S′

Pe(n0(s), n1(s)) (13)

≥ 21−2|S| ·
∏
s∈S

Pe(n0(s), n1(s)) (14)

≥ 21−2|S|Pknown
L (xn) (15)

The redundancy is

Redn(xn) = Redknown
n (xn) + 2|S| − 1 (16)

=
|S|
2

log
n

|S|
+ |S|+ 2 + 2|S| − 1 (17)
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Summary

Two part code vs. Mixture code(Plug-in code)

Look at KT estimator which is is optimal in minimax sense. And the
mixture is sequentially implementable by KT estimator.

Even though we do not know the tree model(only depth is given),
can design good compressor using CTW.
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