Structured Policy Iteration for Linear Quadratic Regulator

Youngsuk Park¹ with R. Rossi², Z. Wen³, G. Wu², and H. Zhao²

Stanford University 1 , Adobe research 2 , Deepmind 3

July 14, 2020

Introduction

- reinforcement learning (RL) is about learning from interaction with delayed feedback
 - decide action to take, which affects the next state of environment
 - need sequential decision making
- most of discrete RL algorithms scales poorly for tasks in continuous space
 - discretize state or/and action space
 - curse of dimensionality
 - sample inefficiency

Linear Quadratic Regulator

 Linear Quadratic Regulator (LQR) has rich applications for continuous space task

- e.g., motion planning, trajectory optimization, portfolio

Infinite horizon (undiscounted) LQR problem

$$\underset{\pi}{\text{minimize}} \quad \mathbb{E}\left(\sum_{t=0}^{\infty} x_t^T Q x_t + u_t^T R u_t\right) \tag{1}$$

subject to $x_{t+1} = Ax_t + Bu_t,$ $u_t = \pi(x_t), \ x_0 \sim \mathcal{D},$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, Q \succeq 0$, and $R \succ 0$.

- quadratic cost Q, R and linear dynamics $\boldsymbol{A}, \boldsymbol{B}$
- -Q, R set relative weights of state deviation and input usage

Preliminary

Linear Quadratic Regulator (Continued)

LQR problem

$$\begin{array}{ll} \underset{\pi}{\text{minimize}} & \mathbb{E}\left(\sum_{t=0}^{\infty}x_{t}^{T}Qx_{t}+u_{t}^{T}Ru_{t}\right)\\ \text{subject to} & x_{t+1}=Ax_{t}+Bu_{t},\\ & u_{t}=\pi(x_{t}), \; x_{0}\sim\mathcal{D}, \end{array}$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, Q \succeq 0$, and $R \succ 0$.

- well-known facts
 - linear optimal policy (or control gain) $\pi^*(x) = Kx$,
 - quadratic optimal value function (cost-to-go) $V^{\star}(x) = x^T P x$ s.t.

$$P = A^T P A + Q - A^T P B (B^T P B + R)^{-1} B^T P A,$$

$$K = -(B^T P B + R)^{-1} B^T P A.$$

– P can be derived efficiently, e.g., Riccati recursion, SDP, etc

many variants and extensions

– e.g., time-varying, averaged or discounted, jumping LQR etc.

Structured Linear Policy

can we find the structured linear policy for LQR?

structure can mean (block) sparse, low-rank, etc

- more interpretable, memory and computationally efficient, well-suited for distributed setting
- Often, structure policy is related to physical decision system
 - e.g., data cooling system need to install/arrange cooling infrastructure
- To tackle this, we develop
 - formulation, algorithm, theory and practice

Formulation

regularized LQR problem

$$\underset{K}{\text{minimize}} \quad \overbrace{\mathbb{E}\left(\sum_{t=0}^{\infty} x_t^T Q x_t + u_t^T R u_t\right)}^{f(K)} + \lambda r(K) \quad (2)$$

subject to $x_{t+1} = A x_t + B u_t,$
 $u_t = K x_t, \quad x_0 \sim \mathcal{D},$

- explicitly restrict policy to linear class, i.e., $u_t = K x_t$
- value function is still quadratic, i.e., $V(x) = x^T P x$ for some P
- convex regularizer with (scalar) parameter $\lambda \geq 0$

• regularizer r(K) induces the policy structure

- lasso $||K||_1 = \sum_{i,j} |K_{i,j}|$ for sparse structure
- group lasso $\|K\|_{\mathcal{G},2} = \sum_{g \in \mathcal{G}} \|K_g\|_2$ for block-diagonal structure
- nuclear-norm $||K||_* = \sum_i \sigma_i(K)$ for low-rank structure
- proximity $||K K^{\text{ref}}||_F^2$ for some $K^{\text{ref}} \in \mathbb{R}^{n \times m}$,

Preliminary

Structured Policy Iteration (S-PI)

When model is known, S-PI repeats

- (1) Policy (and covariance) evaluation

 \blacktriangleright solve Lyapunov equations to return (P^i,Σ^i)

$$(A + BK^{i})^{T}P^{i}(A + BK^{i}) - P^{i} + Q + (K^{i})^{T}RK^{i} = 0,$$

$$(A + BK^{i})\Sigma^{i}(A + BK^{i})^{T} - \Sigma^{i} + \Sigma_{0} = 0.$$

- (2) Policy improvement

• compute gradient $\nabla_K f(K^i) = 2\left(\left(R + B^T P^i B\right) K^i + B^T P^i A\right) \Sigma^i$

apply proximal gradient step under linesearch

note that

- Lyapunov equation requires $O(n^3)$ to solve
- (almost) no hyperparameter to tune under linesearch (LS),
- LS make stability $\rho(A + BK^i) < 1$ satisfied

Convergence

Theorem (Park et al. '20) Assume K^0 s.t. $\rho(A + BK^0) < 1$. K^i from S-PI Algorithm converges to the stationary point K^* . Moreover, it converges linearly, i.e., after N iterations,

$$\left\| K^{N} - K^{\star} \right\|_{F}^{2} \le \left(1 - \frac{1}{\kappa} \right)^{N} \left\| K^{0} - K^{\star} \right\|_{F}^{2}.$$

Here, $\kappa = 1/\left(\eta_{\min}\sigma_{\min}(\Sigma_0)\sigma_{\min}(R))\right) > 1$ where

$$\eta_{\min} = h_{\eta} \bigg(\sigma_{\min}(\Sigma_0), \sigma_{\min}(Q), \frac{1}{\lambda}, \\ \frac{1}{\|A\|}, \frac{1}{\|B\|}, \frac{1}{\|R\|}, \frac{1}{\Delta}, \frac{1}{F(K^0)} \bigg),$$
(3)

for some non-decreasing function h_{η} on each argument.

- Riccati recursion can give stabilizing initial policy K^0
- (global bound on) fixed stepsize η_{\min} depends on model parameters
- note $\eta_{
 m min} \propto 1/\lambda$
- in practice using LS, stepsize does have to be tuned or calculated

Part 1: Model-based approach for regularized LQR

Model-free Structured Policy Iteration

when model is unknown, S-PI repeats

- (1) Perturbed policy evaluation
 - ▶ get perturbation and (perturbed) cost-to-go { f^j, U^j }_{j=1}^{Ntraj} for each j = 1,..., N_{traj} sample U^j ~ Uniform(S_r) to get a perturbed Kⁱ = Kⁱ + U^j roll out Kⁱ over the horizon H to estimate the cost-to-go

$$\hat{f}^j = \sum_{t=0}^H g(x_t, \hat{K}^i x_t)$$

- (2) Policy improvement

compute the (noisy) gradient

$$\widehat{\nabla_K f(K^i)} = \frac{1}{N_{\text{traj}}} \sum_{j=1}^{N_{\text{traj}}} \frac{n}{r^2} \hat{f^j} U^j$$

apply proximal gradient step

note that

- smoothing procedure adapted to estimate noisy gradient
- $(N_{\mathrm{traj}}, H, r)$ are additional hyperparameters to tune
- LS is not applicable

Part 2: Model-free approach for regularized LQR

Convergence

Theorem (Park et al. '20) Suppose $F(K^0)$ is finite, $\Sigma_0 \succ 0$, and that $x_0 \sim \mathcal{D}$ has norm bounded by Dalmost surly. Suppose the parameters in Algorithm ?? are chosen from $(N_{\text{traj}}, H, 1/r) = h\left(n, \frac{1}{\epsilon}, \frac{1}{\sigma_{\min}(\Sigma_0)\sigma_{\min}(R)}, \frac{D^2}{\sigma_{\min}(\Sigma_0)}\right).$ for some polynomials h. Then, with the same stepsize in Eq. (3), there exist iteration N at most $4\kappa \log\left(\frac{\|K^0 - K^\star\|_F}{\epsilon}\right)$ such that $\|K^N - K^\star\| \leq \epsilon$ with at least $1 - o(\epsilon^{n-1})$ probability. Moreover, it converges linearly, $\|K^{i} - K^{\star}\|^{2} \leq \left(1 - \frac{1}{2\kappa}\right)^{i} \|K^{0} - K^{\star}\|^{2},$ for the iteration i = 1, ..., N, where $\kappa = \eta \sigma_{\min}(\Sigma_0) \sigma_{\min}(R) > 1$.

- Assume K^0 is stabilizing policy but cannot use Riccati here
- here $(N_{\rm traj}, H, r)$ are hyperparameters to tune

Part 2: Model-free approach for regularized LQR

Experiment (Setting)

▶ Consider unstable Laplacian system $A \in \mathbb{R}^{n \times n}$ where

$$A_{ij} = \begin{cases} 1.1, & i = j \\ 0.1, & i = j + 1 \text{ or } j = i + 1 \\ 0, & \text{otherwise} \end{cases}$$

$$B = Q = I_n \in \mathbb{R}^{n imes n}$$
 and $R = 1000 imes I_n \in \mathbb{R}^{n imes n}$

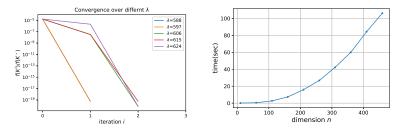
– unstable open loop system, i.e., $\rho(A) \geq 1$

- extremely sensitive to parameters (even under known model setting)
- less in favor of the generic model-free RL approaches to deploy

Model and S-PI algorithm parameter under known model

- system size $n \in [3, 500]$
- lasso penalty with $\lambda \in [10^{-2}, 10^6]$
- LS with initial stepsize $\eta = \frac{1}{\lambda}$ with backtracking factor $\beta = \frac{1}{2}$
- For fixed stepsize, select $\eta = \mathcal{O}\left(\frac{1}{\lambda}\right)$

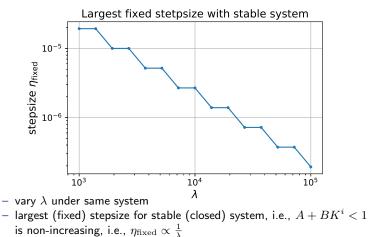
Convergence behavior under LS and scalability



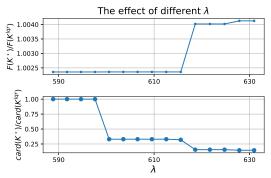
– S-PI with LS converges very fast over various n and λ

- scales well for large system, even with computational bottleneck on solving Lyapunov equation
- For n = 500, takes less than 2 mins (MacBook Air)

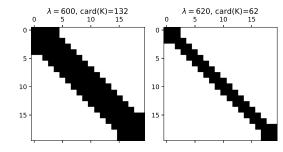
Dependency of stepsize η on λ .



• Trade off between LQR performance and structure *K*



- LQR solution K^{lqr} , and S-PI solution K^{\star}
- λ increases, LQR cost $f(K^{\star})$ increases whereas cardinality decreases (sparsitiy is improved).
- In this range, S-PI barely changes LQR cost but improved the sparsity more than 50%.



sparsity pattern of policy matrix

– sparsity pattern (location of non-zero elements) of the policy matrix with $\lambda=600$ and $\lambda=620.$

Challenge on model-free approach

model-free approach is challenging and unstable

- especially unstable open loop system $\rho(A)<1$
- suffer similar difficulty to the model-free policy gradient method [Fazel et al., 2018] for LQR
- finding stabilizing initial policy K^0 is non-trivial unless $\rho(A)<1$
- suffer high variance, especially sensitive to smoothing parameter r
- open problems and algorithmic efforts needed in practice
 - variance reduction
 - rule of thumb to tune hyperparamters
- still, promising as a different class of model-free approach
 - no discretization
 - no need to compute Q(s, a) pair (like in REINFORCE)
 - seems to work for averaged cost of LQR (easier class of LQR)
 - more in longer version of paper

- ▶ formulate regularized LQR problem to derive structured policy
- develop S-PI algorithm for both model-based and model-free approach with theoretical guarantees
- model-based S-PI works well in practice with (almost) no hyperparameter tuning
- model-free S-PI is still promising but challenging

Summary

Thank you!

Summary