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1. Discussion on Non-convexity of
Regularized LQR.

From Lemma 2 and appendix in (Fazel et al., 2018), unreg-
ularized objective f(K) is known to be not convex, quasi-
convex, nor star-convex, but to be gradient dominant, which
gives the claim that all the stationary points are optimal as
long as E[x0x

T
0 ] � 0 . However, in regularized LQR, this

claim may not hold.

To see this claim that all stationary points may not be
global optimal, let’s define regularized LQR with r(K) =∥∥K −K lqr

∥∥ where K lqr is the solution of the Riccati algo-
rithm. We know that K lqr is the global optimal. Assume
there is another distinct stationary point (like unregularized
LQR) K ′. Then, f(K lqr) + λr(K lqr) = f(K lqr) is always
less than f(K ′) + λ

∥∥K ′ −K lqr
∥∥. If not,i.e., f(K lqr) ≥

f(K ′) +λ
∥∥K ′ −K lqr

∥∥, then f(K ′) < f(K lqr) holds and
this is contradiction, showing all stationary points is not
global optimal like unregularized LQR. Whether regular-
ized LQR has only one stationary point or not is still an
open question.

2. Additional Examples of Proximal
Operators

Assume λ, λ1, λ2 ∈ R+ are positive numbers. We denote
(z)i ∈ R as its ith element or (z)j ∈ Rnj as its jth block
under an explicit block structure, and (z)+ = max(z, 0).

• Group lasso. For a group lasso penalty r(x) =∑N
j ‖xj‖2 with xj ∈ Rnj ,

(
proxr,λη(x)

)
j

=

(
1− λη

‖xj‖2

)
+

xj
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• Elastic net For a elastic net r(x) = λ1‖x‖1 +λ2‖x‖22,(
proxg,U (x)

)
i

= sign(xi)

(
1

λ2η + 1
|xi| −

λ1η

λ2η + 1
)

)
+

• Nonnegative constraint. Let r(x) = 1(x ≥ 0) be the
nonnegative constraint. Then

proxr,λη(x) = (x)+

• Simplex constraint Let r(x) = 1(x ≥ 0,1Tx = 1)
be the simplex constraint. Then for U = Diag(u),(

proxr,ηλ(x)
)
i

= (xi − ηλν)+,

Here, ν is the solution satisfying
∑
i(xi − ηλν)+ = 1,

which can be found efficiently via bisection.

3. Proof for Convergence Analysis of S-PI
Let’s define Σ(K) = Ex0∼D[

∑∞
t=0 xtx

T
t ]. We often adopt

and modify several techincal Lemmas like perturbation anal-
ysis from (Fazel et al., 2018).
Lemma 1 (modification of Lemma 16 in (Fazel et al.,
2018)). Suppose A + BK is stable and K ′ is in the ball
B(K; ρK), i.e.,

K ′ ∈ B(K; ρK) :=
{
K + ∆K ∈ Rm×n | ‖∆K‖ ≤ ρK

}
where the radius ρK is

ρK =
σmin(Σ0)

4‖Σ(K)‖ (‖A+BK‖+ 1) ‖B‖
.

Then

‖Σ(K ′)− Σ(K)‖ ≤ ‖Σ(K)‖ (1)

Lemma 2 (Lemma 2 restated). For K with stable A+BK,
f(K) is locally smooth with

LK = 4‖Σ(K)‖‖R+BTP (K)B‖ <∞,

within local ball around K ∈ B(K; ρK)

And f(K) is (globally) strongly convex with

m = σmin(Σ0)σmin(R) ≥ 0.

In addition, A+BK ′ is stable for all K ′ ∈ B(K; ρK).
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Proof. First, we describe the terms with Talyor expansion

f(K ′) =f(K)− 2Tr(∆KT
((
R+BTP (K)B

)
K

+BTP (K)A
)
Σ(K))

+ Tr
(
Σ(K ′)∆KT (R+BTP (K)B)∆K

)︸ ︷︷ ︸
1©

The second order term 1© is (locally) upper bounded by

1© ≤ ‖Σ(K ′)‖‖R+BTP (K)B‖‖∆K‖2F
(a)

≤ 2‖Σ(K)‖‖R+BTP (K)B‖‖∆K‖2F
where (a) holds due to Lemma 1

‖Σ(K ′)‖ ≤ ‖Σ(K)‖+ ‖Σ(K)− Σ(K ′)‖ ≤ 2‖Σ(K)‖

within a ball K ′ ∈ B(K; ρK).

On the other hand,

1© ≥ σmin(Σ(K ′))σmin(R+BTP (K)B))‖∆K‖2F
(b)

≥ σmin(Σ0)σmin(R)‖∆K‖2F
where (b) hold due to Σ0 � Σ(K ′) and R � R +
BTP (K)B.

Therefore, the second order term is (locally) bounded by

m

2
‖∆K‖2F ≤ 1© ≤ LK

2
‖∆K‖2F

where

m =2σmin(Σ0)σmin(R) ≥ 0,

LK =2‖Σ(K)‖‖R+BTP (K)B‖ <∞.

Lemma 3 (Lemma 3 restated). Let K+ = proxr,λη(K −
η∇f(K)). Then

K+ ∈ B(K; ρK)

holds for any 0 < η < ηλ,rK where ηλ,rK is given as

ηλ,rK =


ρK

‖∇f(K)‖+λnm r(K) = ‖K‖1
ρK

‖∇f(K)‖+λmin(n,m) r(K) = ‖K‖∗
ρK

2‖∇f(K)‖+2λ‖K−Kref‖ r(K) = ‖K −Kref‖2F

.

Proof. For lasso, let Sλη be a soft-thresholding operator.

‖K+ −K‖ ≤ ‖(K − η∇f(K))−K‖+ ‖K+ − (K − η∇f(K))‖
≤ η‖∇f(K)‖+ ‖(Sηλ(K − η∇f(K))− (K − η∇f(K))‖
≤ η‖∇f(K)‖+ ηλnm

≤ η(∇f(K) + λnm)

≤ ρK

where the last inequality holds iff

η ≤ ρK
‖∇f(K)‖+ λnm

.

For nuclear norm,

‖K+ − (K − η∇f(K))‖
≤ ‖(TrunSVDηλ(K − η∇f(K))− (K − η∇f(K))‖
≤ ‖U(diag(Sλη[σ1, . . . , σmin(n,m)])

− diag(σ1, . . . , σmin(n,m)))V
T ‖

≤ ηλmin(n,m)

Therefore,

‖K+ −K‖ ≤ ‖(K − η∇f(K))−K‖+ ‖K+ − (K − η∇f(K))‖
≤ η(∇f(K) + λmin(n,m))

≤ ρK

where the last inequality holds iff

η ≤ ρK
‖∇f(K)‖+ λmin(n,m)

.

For the third regulazer,

‖K+ − (K − η∇f(K))‖
(a)

≤
∥∥∥∥2ηλKref +K − η∇f(K)

2ηλ+ 1
− (K − η∇f(K))

∥∥∥∥
F

=

∥∥∥∥ 2ηλ

2ηλ+ 1
(Kref −K)− 2ηλ

2ηλ+ 1
η∇f(K)

∥∥∥∥
F

(b)

≤ 2ηλ
∥∥Kref −K

∥∥
F

+ η ‖∇f(K)‖F ,

where (a) holds from the closed solution of proximal op-
erator in Lemma 1(in main paper) and (b) holds due to

2ηλ
2ηλ+1 ≤ 2ηλ and 2ηλ

2ηλ+1 ≤ 1. Therefore, using this in-
equality gives

‖K+ −K‖
≤ ‖(K − η∇f(K))−K‖+ ‖K+ − (K − η∇f(K))‖
≤ 2η(‖∇f(K)‖+ λ

∥∥Kref −K
∥∥
F

)

≤ ρK ,

where the last inequality holds iff

η ≤ ρK
2(‖∇f(K)‖+ λ ‖Kref −K‖F )

.

Lemma 4. For any 0 < η ≤ min( 1
LK

, ηλ,rK ), let K+ =
proxr,λη(K−η∇f(K)) = K−ηGη(K) whereGη(K) =
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1
η (K − proxr,λη(K − η∇f(K))). Then, for any Z ∈
Rm×n,

F (K+) ≤ F (Z) +Gη(K)T (K − Z)− m

2
‖K − Z‖2F

− η

2
‖Gη(K)‖2F (2)

holds.

Proof. For K+ = K − ηGη(K) with any 0 < η and any
Z ∈ Rm×n, we have

r(K − ηGη(K))

(a)

≤ r(Z)−Tr
(
∂r(K − ηGη(K))T (Z −K + ηGη(K))

)
(b)
= r(Z)−Tr

(
(Gη(K)−∇f(K))T (Z −K + ηGη(K))

)
= r(Z) + Tr

(
Gη(K)T (K − Z)

)
− η ‖Gη(K)‖2F

+ Tr
(
∇f(K)T (Z −K + ηGη(K))

)
where (a) holds due to convexity of g, (b) holds due to the
property of subgradient on proximal operator. Next, for any
0 < η ≤ ηλ,rK , K+ ∈ B(K; ρK) holds from Lemma 3 and
thus f(K) is locally smooth. Therefore

f(K − ηGη(K))

(c)

≤ f(K)−Tr
(
∇f(K)T ηGη(K)

)
+
LKη

2

2
‖Gη(K)‖2F

(d)

≤ f(K)−Tr
(
∇f(K)T ηGη(K)

)
+
η

2
‖Gη(K)‖2F

(e)

≤ f(Z)−Tr
(
∇f(K)T (Z −K)

)
− m

2
‖Z −K‖2F

−Tr
(
∇f(K)T ηGη(K)

)
+
η

2
‖Gη(K)‖2F

= f(Z)−Tr
(
∇f(K)T (Z −K + ηGη(K))

)
− m

2
‖Z −K‖2F +

η

2
‖Gη(K)‖2F (3)

where (c) holds due to L-smoothness for K+ ∈ B(K; ρK),
(d) holds by η ≤ 1

LK
, (e) holds due to m-strongly convexity

at K. And note that Substituting Z = K in (3) is equivalent
to linesearch criterion in Eq. (8) (in main paper), which
will be satisfied for small enough stepsize η after linesearch
iterations.

Adding two inequalities above gives

F (K+) =f(K − ηGη(K)) + r(K − ηGη(K))

≤ F (Z) + Tr
(
Gη(K)T (K − Z)

)
(4)

− m

2
‖Z −K‖2F −

η

2
‖Gη(K)‖2F

Proposition 1 (Proposition 1 restated). Assume A + BK
is stable. For any stepsize 0 < η ≤ min( 1

LK
, ηrK) and next

iterate K+ = proxr(·),ηλ(K − η∇f(K)),

ρ(A+BK+) < 1 (5)

F (K+) ≤ F (K)− 1

2η
‖K −K+‖2F (6)

holds.

Proof. From Lemma 3, (5) comes immediately from
Lemma 8 in (Fazel et al., 2018). And applying Z = K
in Lemma 4 gives (6).

Lemma 5 (Lemma 4 restated). Assume that {Ki}i=0,...

is a stabilizing sequence and associated {f(Ki)}i=0,...

and {‖Ki −K?‖F }i=0,... are decreasing sequences. Then,
Lemma 3 holds for

ηλ,r =


ρL

ρf+λnm
r(K) = ‖K‖1

ρL

ρf+λmin(n,m)
r(K) = ‖K‖∗

ρL

2ρf+4λ∆
r(K) = ‖K −Kref‖2F

. (7)

where

ρf = 2
F (K0)

σmin(Q)

(∥∥BT∥∥ F (K0)

σmin(Σ0)
‖A‖+(

‖R‖+
∥∥BT∥∥ F (K0)

σ(Σ0)
‖B‖

)
(∆ + ‖K?‖)

)
,

ρL =
σmin(Σ0)2

8F (K0)‖B‖
.

Proof. For the proof, we derive the global bound on
‖∇f(Ki)‖ ≤ ρf and ρK ≥ ρL, then plug these into
Lemma 3 to complete our claim. First, we utilize the deriva-
tion of the upperbound on ‖P (Ki)‖ and ‖Σ(Ki)‖ in (Fazel
et al., 2018) under the assumption of decreasing sequence
as follows,

‖P (Ki)‖ ≤ F (K0)

σmin(Σ0)
, ‖Σ(Ki)‖ ≤ F (K0)

σmin(Q)
.

From this, we have

ρK =
σmin(Σ0)

4‖Σ(K)‖ (‖A+BK‖+ 1) ‖B‖
≥ σ2

min(Σ0)

8F (K0)‖B‖

holds where we used the fact that ‖A + BKi‖ < 1 and
‖Σ(Ki)‖ ≤ F (K0)

σmin(Q) . Now we complete the proof by also
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providing ρf .Since ‖∇f(Ki)‖ is bounded as

‖∇f(Ki)‖ ≤
∥∥2
((
R+BTPB

)
K +BTPA

)
Σ
∥∥

≤ 2
( (
‖R‖+

∥∥BT∥∥ ‖P‖ ‖B‖) ‖K‖
+
∥∥BT∥∥ ‖P‖ ‖A‖ ) ‖Σ‖

≤ 2

((
‖R‖+

∥∥BT∥∥ F (K0)

σmin(Σ0)
‖B‖

)
‖K‖

+
∥∥BT∥∥ F (K0)

σmin(Σ0)
‖A‖

)
F (K0)

σ(Q)

≤ 2

((
‖R‖+

∥∥BT∥∥ F (K0)

σmin(Σ0)
‖B‖

)
(‖K?‖+ ∆)

+
∥∥BT∥∥ F (K0)

σ(Σ0)
‖A‖

)
F (K0)

σmin(Q)

where the last inequality holds due to ‖K‖ ≤
(‖K?‖+ ‖K −K?‖) ≤ ‖K?‖+ ∆.

Proposition 2. Let ηi be the stepsize from backtracking
linesearch at i-th iteration. After N iterations, it converges
to a stationary point K? satisfying

min
i=1,...,N

‖Gηi(Ki)‖2F ≤
2(F (K0)− F ?)

ηminN

where Gηi(K
i) ∈ ∇f(Ki) + ∂r(Ki − ηi∇f(Ki)),

Gηi(K
i) = 0 iff 0 ∈ ∂F (Ki). Moreover,

ηmin = hη

(
σmin(Σ0), σmin(Q),

1

λ
,

1

‖A‖
,

1

‖B‖
,

1

‖R‖
,

1

∆
,

1

F (K0)

)
where hη is a function non-decreasing on each argument.

Proof. From Lemma 1,

F (Ki+1) ≤ F (Ki)− ηi
2
‖Gηi(Ki)‖2F ∀i

Reordering terms and averaging over iterations i = 1 . . . N
give

1

N

N∑
i=1

‖Gηi(Ki)‖22 ≤
2

N

N∑
i=1

1

ηi
(F (Ki)− F (Ki+1))

≤ 2(F (K0)− F (K?))

min
i=1,...,N

ηiN
.

And LHS is lower bounded by

1

N

N∑
i=1

‖Gηi(Ki)‖2F ≥ min
i=1,...,N

‖Gηi(Ki)‖2F ,

giving the desirable result. Moreover, it converges to the
stationary point since limi→∞Gηi(K

i) = 0.

Now the remaining part is to bound the stepsize. Note that
the stepsize ηi after linesearch satisfies

ηi ≥
1

β
min

(
1

LKi
, ηrKi

)
.

First we bound 1
LKi

as follows,

1

LKi

=
1

4‖Σ(K)‖‖R+BTP (K)B‖

≥ 1

4‖Σ(K)‖(‖R‖+ ‖BT ‖‖P (K)‖‖B‖)

≥ σmin(Σ0)σmin(Q)

4F (K0)(σmin(Q)‖R‖+ F (K0)‖BT ‖‖B‖)
.

Next, about the bound on ηλ,rKi , we already have ηλ,rKi ≥ η
λ,r

from Lemma 5.

Note that both of bounds are proportional to σmin(Σ0) and
σmin(Q), and inverse-proportional to ‖A‖ , ‖B‖ , ‖R‖ ,∆
and F (K0).

Therefore

min
i=1,...,

ηi ≥ ηmin = hη

(
σmin(Σ0), σmin(Q),

1

λ
,

1

‖A‖
,

1

‖B‖
,

1

‖R‖
,

1

∆
,

1

F (K0)

)
for some hη that is non-decreasing on each argument.

Theorem 1 (Theorem 1 restated). Ki from Algorithm 1
converges to the stationary pointK?. Moreover, it converges
linearly, i.e., after N iterations,

∥∥KN −K?
∥∥2

F
≤
(

1− 1

κ

)N ∥∥K0 −K?
∥∥2

F
.

Here, κ = 1/ (ηminσmin(Σ0)σmin(R))) > 1 where

ηmin = hη

(
σmin(Σ0), σmin(Q),

1

λ
,

1

‖A‖
,

1

‖B‖
,

1

‖R‖
,

1

∆
,

1

F (K0)

)
, (8)

for some non-decreasing function hη on each argument.



Title Suppressed Due to Excessive Size

Proof. Substituting Z = K? in Lemma 4 gives,

F (K+)− F ?

≤ Tr
(
Gη(K)T (K −K?)

)
− m

2
‖K −K?‖2F −

η

2
‖Gη(K)‖2F

=
1

2η

(
‖K −K?‖2F − ‖K −K

? − ηGη(K)‖2F
)

− m

2
‖K −K?‖2F

=
1

2η

(
‖K −K?‖2F −

∥∥K+ −K?
∥∥2

F

)
− m

2
‖K −K?‖2F .

Reordering terms gives∥∥K+ −K?
∥∥2

F
≤ ‖K −K?‖2F
−
(
2η(F (K+)−K?) +mη ‖K −K?‖2F

)
≤ (1−mη) ‖K −K?‖2F

where the last inequality holds due to F (K+)− F ? ≥ 0.

Therefore, after N iterations,∥∥KN −K?
∥∥2

F
≤ (1−mηN ) · · · (1−mη1)

∥∥K0 −K?
∥∥2

F

≤ (1−mηmin)N
∥∥K0 −K?

∥∥2

where ηmin is the same one in Proposition 2

Corollary 1. LetK? be the stationary point from Algorithm
1. Then, after N iterations

N ≥ 2κ log

(∥∥K0 −K?
∥∥
F

ε

)
,

∥∥KN −K?
∥∥
F
≤ ε

holds where κ = 1/ (ηminσmin(Σ0)σmin(R))) > 1 and
ηmin in Eq. (8).

Proof. This is immediate from Theorem 1, using the in-
equality (1 − 1/κ)N ≤ e−N/κ and by taking the loga-
rithm.

4. Proof for Convergence Analysis of
Model-free S-PI

Lemma 6 (Lemma 30 in (Fazel et al., 2018)). There ex-
ists polynomials , hNtraj

, hH , hr such that, when r <

1/hr(1/ε), Ntraj ≥ hNtraj
(n, 1/ε, L2

σmin(Σ0) ) and H ≥

hH(n, 1/ε), the gradient estimate ∇̂f(K) given in Eq. (13)
of Algorithm 3 satisfies∥∥∥∇̂f(K)−∇f(K)

∥∥∥
F
≤ ε

with high probability (at least 1− (ε/n)
n.

Theorem 2 (Theorem 2 restated). Suppose f(K0) is finite,
Σ0 � 0, and that x0 ∼ D has norm bounded by L almost
surly. Suppose the parameters in Algorithm 3 are chosen
from

(Ntraj, H, 1/r) = h

(
n,

1

(σmin(Σ0)σmin(R))
,

L2

σmin(Σ0)

)
.

for some polynomials h. Then, with the same stepsize in
Eq. (8), Algorithm 3 converges to its stationary point K?

with high probability. In particular, there exist iteration N

at most 4κ log

(
‖K0−K?‖

F

ε

)
such that

∥∥KN −K?
∥∥ ≤ ε

with at least 1−o(εn−1) probability. Moreover, it converges
linearly,

∥∥Ki −K?
∥∥2 ≤

(
1− 1

2κ

)i ∥∥K0 −K?
∥∥2
,

for the iteration i = 1, . . . , N , where κ =
ησmin(Σ0)σmin(R) > 1.

Proof. Let ε be the error bound we want to obtain, i.e.,∥∥KN −K?
∥∥ ≤ ε where KN is the policy from Algorithm

3 after N iterations.

For a notational simplicity, we denote K ← Ki and see
the contraction of the proximal operator at ith iteration.
First we use Lemma 6 to claim that, with high probability,∥∥∥∇̂f(K)−∇f(K)

∥∥∥
F
≤ αε for long enough numbers of

trajactory Ntraj and horizon H where α is specified later.

Second, we bound the error after one iteration of ap-
proximated proximal gradient step at the policy K, i.e.,
‖K ′ −K+‖F . Here let K ′ = prox(K − η∇̂f(K) be

the next iterate using approximate gradient ∇̂f(K)) and
K+ = proxλr(K − η∇f(K) be the one using the exact
gradient ∇f(K).

∥∥K ′ −K+
∥∥
F

=
∥∥∥prox(K − η∇̂f(K)− prox(K − η∇f(K)

∥∥∥
F

≤
∥∥∥(K − η∇̂f(K)− (K − η∇̂f(K)

∥∥∥
F

= η
∥∥∥∇̂f(K)−∇f(K)

∥∥∥
F

≤ ηαε

where we use the fact that proximal operator is non-
expansive and

∥∥∥∇̂f(K)−∇f(K)
∥∥∥
F
≤ αε holds for

proper parameter choices (the claim in the previous para-
graph).

Third, we find the contractive upperbound after one iteration
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using approximated proximal gradient.

‖K ′ −K?‖F ≤
∥∥K ′ −K+

∥∥
F

+
∥∥K+ −K?

∥∥
F

≤
∥∥K ′ −K+

∥∥
F

+
√

(1− 1/κ) ‖K −K?‖F
≤ ηαε+

√
(1− κ) ‖K −K?‖F .

Let’s assume ‖K −K?‖F ≥ ε under current policy. Then,
taking square on both sides gives

‖K ′ −K?‖2F ≤ η
2α2ε2 + 2ηαε

√
(1− 1/κ) ‖K −K?‖F

+ (1− 1/κ) ‖K −K?‖2F
≤
(
1− 1/κ+ 2αη + α2η2

)
‖K −K?‖2F ,

where we used
√

(1− 1/κ) ≤ 1, 1 ≤ κ, and the assump-
tion. Choosing α = 1

5ηκ = 1
5σmin(Σ0)σmin(R)) results in

‖K ′ −K?‖2 ≤ (1− 1/(2κ)) ‖K −K?‖2 ,

with high probability 1− (αε/n)n. This says the approxi-
mate proximal gradient is contractive, decreasing in error
after one iteration. Keep applying this inequality, we get∥∥Ki −K?

∥∥2 ≤ (1− 1/(2κ))
i ∥∥K0 −K?

∥∥2
.

as long as ε ≤
∥∥Ki−1 −K?

∥∥
F

.

This says that there must exist the iteration N > 0 s.t.∥∥KN −K?
∥∥
F
≤ ε ≤

∥∥KN−1 −K?
∥∥
F

(9)

Now we claim this N is at most 4κ log

(
‖K0−K?‖

F

ε

)
.

To prove this claim, suppose it is not, i.e., N ≥

4κ log

(
‖K0−K?‖

F

ε

)
+ 1. Then, for N > 1,

∥∥KN−1 −K?
∥∥2

F
≤ (1− 1/(2κ))

N−1 ∥∥K0 −K?
∥∥2

< e−
N−1
2κ

∥∥K0 −K?
∥∥2

≤

(∥∥K0 −K?
∥∥
F

ε

)−2 ∥∥K0 −K?
∥∥2

= ε2,

which is a contradiction to (9).

Finally, we show the probability that this event occurs.
Note that all randomness occur when estimating N gra-
dient within αε error. From union bound, it occurs at least
1−N(αε/n)n. And this is bounded below by

1−N(αε/n)n ≥ 1−

(
4κ log

(∥∥K0 −K?
∥∥
F

ε

)
+ 1

)
(αε/n)n

≥ 1− o

(
εn log

(∥∥K0 −K?
∥∥
F

ε

))
= 1− o(εn−1).
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Figure 1. Convergence behavior of the Structured Policy Iteration
(S-PI) under linesearch for Laplacian system of (n,m) = (3, 3)
over various λs.

5. Additional Experiments on Stepsize
Sensitivity

In this section, we scrutinize the convergence behaviors of
S-PI under some fixed stepsize. For a very small Lapla-
cian system (n,m) = (3, 3) with Lasso penalty λ = 3000,
we run S-PI over a wide range of stepsizes. For stepsize
larger than 3.7e − 4, S-PI diverges and thus is ran under
stepsizes smaller than 3.7e − 4. Let Kmin be the policy
where the objective value attains its minimum among over-
all iterates and K? be the policy from S-PI with linesearch
(non-fixed stepsize). Here the cardinality of the optimal
policy is 3. For a fixed stepsizes in [3.7e − 5, 3.7e − 6],
S-PI converges to the optimal. In Figure 2, the objective
value monotonically decreases and the policy converges to
optimal one based on errors and cardinality. However, for
smaller stepsize like [3.7e− 7, 3.7e− 8, 3.7e− 9], Figure 3
shows that S-PI still converges but does not show monotonic
behaviors nor converges to the optimal policy. These fig-
ures demonstrate the sensitivity of a stepsize when S-PI is
used under a fixed stepsize, rather than linesearch. Like in
Figure 3, the algorithm can be unstable under fixed stepsize
because the next iterate K+ may not satisfy the stability
condition ρ(A+BK+) < 1 and or are not guaranteed for
a monotonic decrease. Moreover, this instability may lead
to another stationary point even when the iterate falls in
some stable policy region after certain iterations. This not
only demonstrates the importance of lineasearch due to its
sensitivity on the stepsize, but may provide the evidence for
why other policy gradient type of methods for LQR did not
perform well in practice.
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Figure 2. Convergence behavior of the Structured Policy Iteration
(S-PI) over fixed stepsizes [3.7e−5, 3.7e−6] for Laplacian system
of (n,m) = (3, 3) with λ = 3000.
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Figure 3. Convergence behavior of the Structured Policy Iteration
(S-PI) over fixed stepsizes [3.7e−7, 3.7e−8, 3.7e−9] for Lapla-
cian system of (n,m) = (3, 3) with λ = 3000.
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